高数下册笔记

关于高等数学下册的一些笔记


向量的方向角和方向余弦

向量的方向角和方向余弦

向量叉乘

在三维几何中,向量a和向量b的叉乘结果是一个向量,该向量垂直于a和b向量构成的平面,该向量也被称作法向量

矢量叉乘 - 小时百科

右手螺旋定则,手指指向左元。

叉乘公式

—行列式的展开

img

空间平面

空间平面方程

表达式

  • 截距式

    x / a + y / b + z / c = 1 x/a+y/b+z/c=1 x/a+y/b+z/c=1它与三坐标轴的交点分别为 P ( a , 0 , 0 ) , Q ( 0 , b , 0 ) , R ( 0 , 0 , c ) P(a, 0, 0), Q(0, b, 0), R(0, 0, c) P(a,0,0),Q(0,b,0),R(0,0,c)

  • 点法式

    A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0法向量为 n ⃗ = ( A , B , C ) \vec n=(A,B,C) n =(A,B,C)

  • 一般式

    A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0基本与点法式相同

可用平面上两条相交的直线的方向向量做点乘从而求出平面法向量

空间直线

空间直线方程
  • 两平面联立
  • 对称式,由方向向量和直线上一点确定
  • 参数式 // 可由对称式导出

详情戳链接

空间曲面与空间曲线

空间曲面及其方程

ququ

曲线弧长

设空间曲线C由参数方程
x = x ( t ) ,   y = y ( t ) ,   z = z ( t ) x=x(t),\,y=y(t),\,z=z(t) x=x(t),y=y(t),z=z(t)

给出,且函数 x = x ( t ) ,   y = y ( t ) ,   z = z ( t ) x=x(t), \, y=y(t), \, z=z(t) x=x(t),y=y(t),z=z(t) 在闭区间 [ α ,   β ] [\alpha,\,\beta] [α,β] 上连续则弧长s为

s = ∫ α β x ′ 2 ( t ) + y ′ 2 ( t ) + z ′ 2 ( t ) d t s=\int_{\alpha}^{\beta} \sqrt{x'^2(t)+y'^2(t)+z'^2(t)}dt s=αβx′2(t)+y′2(t)+z′2(t) dt

曲线切面

img

空间曲面的方程为
F ( x , y , z ) = 0 , F(x,y,z)=0, F(x,y,z)=0,
M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0) 是曲面 Σ \Sigma Σ 上的一点.

  • 法向量:
    ( F x ′ ( x 0 , y 0 , z 0 ) , F y ′ ( x 0 , y 0 , z 0 ) , F z ′ ( x 0 , y 0 , z 0 ) ) . (F'_x(x_0,y_0,z_0),F'_y(x_0,y_0,z_0),F'_z(x_0,y_0,z_0)). (Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)).

  • 法线方程:
    x − x 0 F x ′ ( x 0 , y 0 , z 0 ) = y − y 0 F y ′ ( x 0 , y 0 , z 0 ) = z − z 0 F z ′ ( x 0 , y 0 , z 0 ) \frac{x-x_0}{F'_x(x_0,y_0,z_0)}=\frac{y-y_0}{F'_y(x_0,y_0,z_0)}=\frac{z-z_0}{F'_z(x_0,y_0,z_0)} Fx(x0,y0,z0)xx0=Fy(x0,y0,z0)yy0=Fz(x0,y0,z0)zz0

  • 切平面方程:
    F x ′ ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ′ ( x 0 , y 0 , z 0 ) ( y − y 0 ) + F z ′ ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0. F'_x(x_0,y_0,z_0)(x-x_0)+ F'_y(x_0,y_0,z_0)(y-y_0)+ F'_z(x_0,y_0,z_0)(z-z_0)=0. Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0.

空间曲面与曲线 - 知乎,

空间曲面的切平面和法线-知乎,

空间曲线的切线

空间曲线可视作两个曲面相交而成。

设曲线 l l l 由面 α   , β \alpha\, ,\beta α,β 相交而成,

曲线 l l l M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0) 处的切线可视作 α   , β \alpha\, ,\beta α,β 在点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0) 处的切平面的交线 (切平面就是过曲面该点切线集)

那么设面 α   , β \alpha\, ,\beta α,β M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0) 的法向量分别为 n 1 ,   n 2 n_1,\,n_2 n1,n2显然 l = n 1 × n 2 l=n_1 \times n_2 l=n1×n2.

  • α \alpha α 的法向量: n 1 = [ ∂ F ∂ x , ∂ F ∂ y , ∂ F ∂ z ] T n_1=[\frac{∂F}{∂x},\frac{∂F}{∂y},\frac{∂F}{∂z}]^{T} n1=[xF,yF,zF]T
  • β \beta β 的法向量: n 2 = [ ∂ G ∂ x , ∂ G ∂ y , ∂ G ∂ z ] T n_2 = [\frac{\partial{G}}{\partial{x}},\frac{\partial{G}}{\partial{y}},\frac{\partial{G}}{\partial{z}}]^{T} n2=[xG,yG,zG]T
  • 显然 n 1 × n 2 = [ ∂ ( F , G ) ∂ ( y , z ) , ∂ ( F , G ) ∂ ( z , x ) , ∂ ( F , G ) ∂ ( x , y ) ] T n_1 \times n_2 = [\frac{\partial{(F,G)}}{\partial{(y,z)}},\frac{\partial{(F,G)}}{\partial{(z,x)}},\frac{\partial{(F,G)}}{\partial{(x,y)}}]^{T} n1×n2=[(y,z)(F,G),(z,x)(F,G),(x,y)(F,G)]T.

其中 ∂ ( F , G ) ∂ ( x , y ) = ∣ ∂ F ∂ x ∂ F ∂ y ∂ G ∂ x ∂ G ∂ y ∣ \frac{\partial (F,G)}{\partial(x,y)}= \begin{vmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial y} \end{vmatrix} (x,y)(F,G)= xFxGyFyG .

参考

空间曲面
切平面与法线

在这里插入图片描述

注记: 心中始终想着一个特例,球面:
x 2 + y 2 + z 2 = R 2 . x^2+y^2+z^2=R^2. x2+y2+z2=R2.

皮球放在地上,地面就是切平面,过切点于地面垂直的线就是法线.

多元函数微分

可微的必要条件

若函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x 0 ,   y 0 ) (x_0,\,y_0) (x0,y0) 处可微,则 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x 0 ,   y 0 ) (x_0,\,y_0) (x0,y0) 处存在对变量 x x x y y y 的偏导数,且

d z ∣ ( x 0 , y 0 ) = f x ′ ( x ,   y ) Δ x + f y ′ ( x ,   y ) Δ y . dz|_{(x_0,y_0)}=f'_x(x,\,y)\Delta x+f'_y(x,\,y)\Delta y. dz(x0,y0)=fx(x,y)Δx+fy(x,y)Δy.

函数 z = f ( x ,   y ) z=f(x,\,y) z=f(x,y) 在点 ( x 0 ,   y 0 ) (x_0,\,y_0) (x0,y0) 处的全微分可表示为

d z ∣ x 0 ,   y 0 = f x ′ ( x 0 ,   y 0 ) d x + f y ′ ( x 0 , y 0 ) d y . dz|_{x_0,\,y_0}=f'_x(x_0,\,y_0)dx+f'_y(x_0,y_0)dy. dzx0,y0=fx(x0,y0)dx+fy(x0,y0)dy.

可微的充分条件

若函数 z = f ( x ,   y ) z=f(x,\,y) z=f(x,y) 的两个偏导数在点 ( x 0 ,   y 0 ) (x_0,\,y_0) (x0,y0) 的某邻域存在,且 f x ′ ( x ,   y ) f'_x(x,\,y) fx(x,y) f y ′ ( x ,   y ) f'_y(x,\,y) fy(x,y) 在点 ( x 0 ,   y 0 ) (x_0,\,y_0) (x0,y0) 处连续,则函数 z = f ( x ,   y ) z=f(x,\,y) z=f(x,y) 在点 ( x 0 ,   y 0 ) (x_0,\,y_0) (x0,y0) 处可微。

从公式出发
Δ z = f x ′ ( x 0 ,   y 0 ) Δ x + f y ′ ( x 0 ,   y 0 ) Δ y + α Δ x + β Δ y . \Delta z=f'_x(x_0,\,y_0)\Delta x + f'_y(x_0,\,y_0)\Delta y +\alpha\Delta x + \beta\Delta y. Δz=fx(x0,y0)Δx+fy(x0,y0)Δy+αΔx+βΔy.

ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho = \sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2

若满足下式则称可微(即余项是 ρ \rho ρ 的高阶无穷小

lim ⁡ ρ → 0 α Δ x + β Δ y ρ = 0. \lim\limits_{\rho\rightarrow0}\frac{\alpha\Delta x + \beta\Delta y}{\rho} =0. ρ0limραΔx+βΔy=0.

偏微分(偏导)

若函数 z = f ( u ,   v ) z=f(u,\,v) z=f(u,v) 可微,则称其全微分为
d z = ∂ z ∂ u d u + ∂ z ∂ v d v dz=\frac{\partial z}{\partial u}du+\frac{\partial z}{\partial v}dv dz=uzdu+vzdv

隐函数微分
  • 二元
    y ′ = − F x ′ ( x , y ) F y ′ ( x , y ) . y'=-\frac{F'_x(x,y)}{F'_y(x,y)}. y=Fy(x,y)Fx(x,y).

  • 三元

    设函数 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0

    偏导

    • F x ′ ( x , y , z ) F'_x(x,y,z) Fx(x,y,z)

    • F y ′ ( x , y , z ) F'_y(x,y,z) Fy(x,y,z)

    • F z ′ ( x , y , z ) F'_z(x,y,z) Fz(x,y,z)

      则有(注意负号

    z x ′ = f x ′ ( x , y ) = − F x ′ ( x , y , z ) F z ′ ( x , y , z ) z'_x=f'_x(x,y)=-\frac{F'_x(x,y,z)}{F'_z(x,y,z)} zx=fx(x,y)=Fz(x,y,z)Fx(x,y,z)

    z y ′ = f y ′ ( x , y ) = − F y ′ ( x , y , z ) F z ′ ( x , y , z ) z'_y=f'_y(x,y)=-\frac{F'_y(x,y,z)}{F'_z(x,y,z)} zy=fy(x,y)=Fz(x,y,z)Fy(x,y,z)

雅可比行列式

多用于坐标系变换,在积分微元改变后要乘上雅可比行列式
img

img

参考:积分“秘宝”——雅克比行列式 - 古诚的文章 - 知乎,

多元函数极值

多元函数极值

必要条件: 设函数 f ( x , y ) f(x,y) f(x,y) 在点 M 0 ( x 0 , y 0 ) M_0(x_0,y_0) M0(x0,y0) 处存在偏导数,且取极值,则
f x ′ ( x 0 , y 0 ) = 0 ,    f y ′ ( x 0 , y 0 ) = 0. f'_x(x_0,y_0)=0,\,\,f'_y(x_0,y_0)=0. fx(x0,y0)=0,fy(x0,y0)=0.
充分条件:设函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 M 0 ( x 0 , y 0 ) M_0(x_0,y_0) M0(x0,y0) 的某邻域 U ( M 0 ) U(M_0) U(M0) 内具有二阶连续偏导数, M 0 M_0 M0 f ( x , y ) f(x,y) f(x,y) 的驻点,记
A = f x x ′ ′ ( x 0 , y 0 ) , B = f x y ′ ′ ( x 0 , y 0 ) , C = f y y ′ ′ ( x 0 , y 0 ) . A=f''_{xx}(x_0,y_0),\enspace B=f''_{xy}(x_0,y_0),\enspace C=f''_{yy}(x_0,y_0). A=fxx′′(x0,y0),B=fxy′′(x0,y0),C=fyy′′(x0,y0).

  1. B 2 − A C < 0 B^2 - AC < 0 B2AC<0 ,则 M 0 M_0 M0 f ( x , y ) f(x,y) f(x,y) 的极值点. 且当 A < 0 A<0 A<0 时, M 0 M_0 M0 为极大值点;当 A > 0 A>0 A>0 时, M 0 M_0 M0 为极小值点.
  2. B 2 − A C > 0 B^2 -AC >0 B2AC>0 , 则 M 0 M_0 M0 不是 f ( x , y ) f(x,y) f(x,y) 的极值点.
    请添加图片描述
条件极值

拉格朗日乘数法
请添加图片描述

方向导数和梯度

方向导数

设函数 z = f ( x , y ) z=f(x,y) z=f(x,y) P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 点的某邻域内有定义, l \boldsymbol{l} l x o y xoy xoy 坐标平面上的一个向量, P ( x , y ) P(x,y) P(x,y) 是由 P 0 P_0 P0 点出发、方向为 l \boldsymbol{l} l 的射线上的点,记 ρ = ( x − x 0 ) 2 + ( y − y 0 ) 2 \rho = \sqrt{(x-x_0)^2+(y-y_0)^2} ρ=(xx0)2+(yy0)2 。 如果极限
lim ⁡ ρ → 0 + f ( x , y ) − f ( x 0 , y 0 ) ρ \lim\limits_{\rho\rightarrow 0^+}{\frac{f(x,y)-f(x_0,y_0)}{\rho}} ρ0+limρf(x,y)f(x0,y0)
存在,则称函数 f ( x , y ) f(x,y) f(x,y) P 0 P_0 P0 点沿方向 l \boldsymbol{l} l方向导数存在,并称此极限为函数 f ( x , y ) f(x,y) f(x,y) P 0 P_0 P0 点沿方向 l \boldsymbol{l} l方向导数,记为
∂ z ∂ l ∣ P 0 或 ∂ f ∂ l ∣ P 0 , \frac{\partial z}{\partial \boldsymbol{l}}\bigg|_{P_0}\quad或 \enspace\frac{\partial f}{\partial \boldsymbol{l}}\bigg|_{P_0}, lz P0lf P0

∂ z ∂ l ∣ P 0 = lim ⁡ ρ → 0 + f ( x , y ) − f ( x 0 , y 0 ) ρ . \frac{\partial z}{\partial \boldsymbol{l}}\bigg|_{P_0}=\lim\limits_{\rho\rightarrow 0^+}\frac{f(x,y)-f(x_0,y_0)}{\rho}. lz P0=ρ0+limρf(x,y)f(x0,y0).

计算
∂ z ∂ l ∣ P 0 = ∂ z ∂ x ∣ P 0 cos ⁡ α + ∂ z ∂ y ∣ P 0 cos ⁡ β , \frac{\partial z}{\partial \boldsymbol{l}}\bigg|_{P_0}=\frac{\partial z}{\partial x}\bigg|_{P_0}\cos\alpha+\frac{\partial z}{\partial y}\bigg|_{P_0}\cos\beta, lz P0=xz P0cosα+yz P0cosβ,
其中 cos ⁡ α , cos ⁡ β \cos\alpha,\cos\beta cosα,cosβ l \boldsymbol l l 的方向余弦

l = ( a , b , c ) \boldsymbol l=(a,b,c) l=(a,b,c) l \boldsymbol l l 的方向余弦为
cos ⁡ α = a ∣ l ∣ , cos ⁡ β = b ∣ l ∣ , cos ⁡ γ = c ∣ l ∣ . \cos\alpha=\frac{a}{|\boldsymbol l|},\enspace\cos\beta=\frac{b}{|\boldsymbol l|},\enspace\cos\gamma=\frac{c}{|\boldsymbol l|}. cosα=la,cosβ=lb,cosγ=lc.

梯度

g r a d u ∣ P 0 = ( ∂ u ∂ x , ∂ u ∂ y , ∂ u ∂ z ) ∣ P 0 . \left.\bold{grad}u\big|_{P_0}=\bigg(\frac{\partial u}{\partial x} ,\frac{\partial u}{\partial y} ,\frac{\partial u}{\partial z} \big)\right|_{P_0}. gradu P0=(xu,yu,zu) P0.

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值