高数下部分公式及部分知识点整理

偏导

1.多元隐函数的偏导

  • 令F=…
  • ∂ z ∂ x = − ∂ F ∂ x ∂ F ∂ z \frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} xz=zFxF
    注意:在求多元隐函数的二次偏导时,要注意z是x的函数,z可能是x与y的函数

全微分及偏导的应用

1.多元函数的全微分:
eg: W = x + 2 y 2 + 3 z 2 W=x+2y^2+3z^2 W=x+2y2+3z2
d w = ∂ w ∂ x d x + ∂ w ∂ y d y + ∂ w ∂ z d z dw=\frac{\partial w}{\partial x}dx+\frac{\partial w}{\partial y}dy+\frac{\partial w}{\partial z}dz dw=xwdx+ywdy+zwdz

2.多元复合函数的全微分
eg: Z = u 3 + v 3 Z=u^3+v^3 Z=u3+v3
u = x + y u=x+y u=x+y
v = 3 x + 5 y v=3x+5y v=3x+5y
求dz
d z = ∂ z ∂ u d u + ∂ z ∂ v d v dz=\frac{\partial z}{\partial u}du+\frac{\partial z}{\partial v}dv dz=uzdu+vzdv
再把du和dv求出来,直接带进去就好,不用化简

3.已知全微分,求未知数
eg:已知 ( x 2 + a x y ) d x + ( x 2 + 3 y 2 ) d y (x^2+axy)dx+(x^2+3y^2)dy (x2+axy)dx+(x2+3y2)dy为某函数全微分,确定a的值
解法: ∂ 2 z ∂ x ∂ y = ∂ 2 z ∂ y ∂ x \frac{\partial^2z}{\partial x\partial y}=\frac{\partial^2z}{\partial y\partial x} xy2z=yx2z
再求二次偏导相等就好

4.多元函数求极值或极值点

  • 求出满足 ∂ z ∂ x = 0 , ∂ z ∂ y = 0 \frac{\partial z}{\partial x}=0,\frac{\partial z}{\partial y}=0 xz=0,yz=0的x,y
  • 设A= ∂ 2 z ∂ x 2 , C = ∂ 2 z ∂ y 2 , B = ∂ 2 z ∂ x ∂ y \frac{\partial^2z}{\partial x^2},C=\frac{\partial^2z}{\partial y^2},B=\frac{\partial^2z}{\partial x\partial y} x22z,C=y22z,B=xy2z,将第一步的结果带入,算出A,B,C。
  • A C − B 2 AC-B^2 ACB2,若>0有极值,A<0有极大值,A>0有极小值
  • 若=0,不确定
  • 若<0,不是极值点

5.条件极值
作 拉 格 朗 日 函 数 L = 原 函 数 + λ 条 件 函 数 作拉格朗日函数L=原函数+\lambda 条件函数 L=+λ
L x = 0 L y = 0 L z = 0 L λ = 0 L_x=0 L_y=0L_z=0L_{\lambda=0} Lx=0Ly=0Lz=0Lλ=0求解,一般列出三个即可。
6.一些注意点:
偏导连续 → \to 函数可微 → \to 偏导存在以及函数连续,偏导存在和函数连续不能互推

空间向量

1.求一个向量 a ⃗ \vec a a 在另一个向量 b ⃗ \vec b b 方向上的投影

  • 投影大小: a ⃗ b ⃗ ∣ b ⃗ ∣ \frac{\vec a\vec b}{|\vec b|} b a b
  • 纯投影:要乘 b ⃗ \vec b b 的单位向量

2.向量叉乘
用矩阵算

  • 若 c ⃗ = a ⃗ × b ⃗ , c ⃗ 垂 直 于 a ⃗ , b ⃗ 若\vec c=\vec a\times \vec b,\vec c垂直于\vec a,\vec b c =a ×b ,c a ,b
  • 若两向量平行,叉乘为0

空间几何

1.求过三个点的平面方程
A x + B y + C x + D = 0 Ax+By+Cx+D=0 Ax+By+Cx+D=0
带入三个点结果有D,把D约掉就行
2.判断面与面,面与向量的关系

  • 向量间点乘为0则是垂直,叉乘为0是平行
  • n ⃗ = ( A , B , C ) 是 平 面 的 法 向 量 \vec n=(A,B,C)是平面的法向量 n =(A,B,C)

3.已知一个面的法向量和一个点,求面
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0
4.求点( x 0 , y 0 , z 0 x_0,y_0,z_0 x0,y0,z0)到面的距离
d = ∣ A x 0 + B y 0 + C z 0 + D ∣ √ A 2 + B 2 + C 2 d=\frac{|Ax_0+By_0+Cz_0+D|}{\surd A^2+B^2+C^2} d=A2+B2+C2Ax0+By0+Cz0+D
5.求两个面的交线方程

  • 一个大括号,里面是两个面的方程,表示两个面的交线方程

6.线与线,线与面的关系
若L: { A 1 X + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \begin{cases} A_1X+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0 \end{cases} {A1X+B1y+C1z+D1=0A2x+B2y+C2z+D2=0
s ⃗ = ( A 1 , B 1 , C 1 ) × ( A 2 , B 2 , C 2 ) / / L \vec s=(A_1,B_1,C_1)\times(A_2,B_2,C_2)//L s =(A1,B1,C1)×(A2,B2,C2)//L

换而言之:用此方法可以求出相交直线的方向向量
7.已知线过一点和方向向量 s ⃗ = ( l , m , n ) \vec s=(l,m,n) s =(l,m,n),求线
L= x − x 0 l = y − y 0 m = z − z 0 n \frac{x-x_0}{l}\frac{}{}=\frac{y-y_0}{m}=\frac{z-z_0}{n} lxx0=myy0=nzz0
提示:已知向量c垂直于a,b,用矩阵可以直接算出c
8.求点到直线的距离

  • 求点在直线上的投影点,再用距离公式
  • 如何求点在直线上的投影点
    联立直线方程和过该点以直线为法向量的方程,即可求出投影点。(两个方程)

9.求 { x = x ( t ) y = y ( t ) z = z ( t ) \begin{cases} x=x(t)\\ y=y(t)\\z=z(t) \end{cases} x=x(t)y=y(t)z=z(t)形式的曲线在某点处的切线与法平面
切线的方向向量 ( x , ( t 0 ) , y , ( t 0 ) , z , ( t 0 ) ) (x^,(t_0),y^,(t_0),z^,(t_0)) (x,(t0),y,(t0),z,(t0))

10.求x,y,z写在一起的曲线在某点处的切线与法平面

  • 还是求导,但是两个导数可能要连立方程求出
  • 自变量的个数为字母的个数减方程的个数

11.求曲线在某点处的法线与切平面
法 向 量 : ( F x , ( x 0 , y 0 , z 0 ) , F y , ( x 0 , y 0 , z 0 ) , F z , ( x 0 , y 0 , z 0 ) , ) 法向量:(F^,_x(x_0,y_0,z_0),F^,_y(x_0,y_0,z_0),F^,_z(x_0,y_0,z_0),) Fx,x0,y0,z0,Fy,x0,y0,z0,Fz,x0,y0,z0,
其他步骤与上述雷同

二重积分

1.交换积分次序
如求积分 ∫ 0 2 d x ∫ x 2 e − y 2 d y \int_0^2dx\int_x^2e^{-y^2}dy 02dxx2ey2dy的值
普通求求不出来
交换次序
∫ 0 2 d y ∫ 0 y e − y 2 d x \int_0^2dy\int_0^ye^{-y^2}dx 02dy0yey2dx
2.计算 ∫ ∫ D d σ \int\int_Dd\sigma Ddσ格式的二重积分

  • 把区域写出来, d σ d\sigma dσ变成dx,dy

3.积分区域与圆有关的二重积分

  • x = r c o s θ x=rcos\theta x=rcosθ
    y = r s i n θ y=rsin\theta y=rsinθ
    d x d y = r d r d θ dxdy=rdrd\theta dxdy=rdrdθ
  • 写出r的上下限, θ \theta θ的上下限

4.积分区域对称的二重积分

  • 关于y轴对称,若为x的奇函数,积分为0;若为x的偶函数,积分为双倍的一半区域的积分值
  • 关于x轴对称同理
  • 关于原点对称, 若 f ( − x , − y ) = − f ( x , y ) , 则 积 分 为 0 ; 若 f ( − x , − y ) = f ( x , y ) , 则 为 双 倍 若f(-x,-y)=-f(x,y),则积分为0;若f(-x,-y)=f(x,y),则为双倍 f(x,y)=f(x,y),0f(x,y)=f(x,y),
  • 关于y=x对称
    ∫ ∫ f ( x , y ) d σ = ∫ ∫ f ( y , x ) d σ \int\int f(x,y)d\sigma=\int\int f(y,x)d\sigma f(x,y)dσ=f(y,x)dσ
    若f(x,y)=f(y,x),则为双倍
    若f(x,y)=-f(y,x),则为0
    5.应用
    可计算曲顶柱体的体积,平面薄片的质量,质心。

三重积分

1.先一后二法
eg: ∫ ∫ ∫ Ω x d x d y d z \int \int \int_\Omega xdxdydz Ωxdxdydz, Ω \Omega Ω为三个坐标面和x+2y+z=1所围成的闭区域。

= ∫ 0 1 d x ∫ 0 ( 1 − x ) / 2 d y ∫ 0 1 − x − 2 y x d z \int_0^1dx\int_0^{(1-x)/2}dy\int_0^{1-x-2y}xdz 01dx0(1x)/2dy01x2yxdz
2.先二后一
∫ ∫ ∫ z 2 d x d y d z \int \int \int z^2dxdydz z2dxdydz, Ω \Omega Ω x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 所 围 成 的 空 间 闭 区 域 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1所围成的空间闭区域 a2x2+b2y2+c2z2=1
= ∫ z 2 d z ∫ ∫ D d x d y = π a b ∫ − c c z 2 ( 1 − z 2 / c 2 ) d z \int z^2dz\int\int_Ddxdy=\pi ab\int_{-c}^c z^2(1-z^2/c^2)dz z2dzDdxdy=πabccz2(1z2/c2)dz
3.柱坐标

  • x= ρ c o s θ \rho cos\theta ρcosθ
    y= ρ s i n θ \rho sin\theta ρsinθ
    z=z
    dv= ρ d ρ d θ d z \rho d\rho d\theta dz ρdρdθdz
    也是先一后二,先dz,再d ρ \rho ρ, d θ d\theta dθ

第一类曲线积分(对弧长的曲线积分)

被积函数的x与y都在曲线上
1. ∫ L f ( x , y ) d s = ∫ α β f [ ϕ ( t ) , ψ ( t ) ] ϕ , 2 ( t ) + ψ , 2 t d t \int_Lf(x,y)ds=\int_\alpha^\beta f[\phi(t),\psi(t)]\sqrt{\phi^{,2}(t)+\psi^{,2}t}dt Lf(x,y)ds=αβf[ϕ(t),ψ(t)]ϕ,2(t)+ψ,2t dt
有时候t可以是x,t可以是y
2.有时候积分是几段的拼接,就正常算极端加起来就好了,不用管顺序什么的。
3.性质

  • 曲线积分的函数是1,积分就是L的长度
  • L关于x轴对称,积分函数是y的奇函数,结果是0…

第二类曲线积分(对坐标的曲线积分)

是有方向的
1. ∫ L P ( x , y ) d x + Q ( x , y ) d y \int _LP(x,y)dx+Q(x,y)dy LP(x,y)dx+Q(x,y)dy,转换成一个未知数即可
2.利用性质计算

  • ∂ P ∂ y = ∂ P ∂ x \frac{\partial P}{\partial y}=\frac{\partial P}{\partial x} yP=xP,则积分与路径无关
  • 格林公式(不封闭的补充成封闭):若L为逆时针,无交叉闭合曲线,
    则, ∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ ( ∂ Q ∂ x − ∂ P ∂ x ) d x d y \int _LP(x,y)dx+Q(x,y)dy=\int(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial x})dxdy LP(x,y)dx+Q(x,y)dy=(xQxP)dxdy
    若L为顺时针 ∫ L P ( x , y ) d x + Q ( x , y ) d y = − ∫ ( ∂ Q ∂ x − ∂ P ∂ x ) d x d y \int _LP(x,y)dx+Q(x,y)dy=-\int(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial x})dxdy LP(x,y)dx+Q(x,y)dy=(xQxP)dxdy
    3.关于对称性比较复杂,需要分类讨论

第一类曲面积分(对面积的曲面积分)

Σ \Sigma Σ为积分曲面
1.z=z(x,y)(在积分曲面上的Z)
∫ ∫   f ( x , y , z ) d s = ∫ ∫ f [ x , y , z ( x , y ) ] 1 + z x 2 ( x , y ) + z y 2 ( x , y ) d x d y \int \int_\ f(x,y,z)ds=\int \int f[x,y,z(x,y)]\sqrt{1+z_x^2(x,y)+z_y^2(x,y)}dxdy  f(x,y,z)ds=f[x,y,z(x,y)]1+zx2(x,y)+zy2(x,y) dxdy(区域是投影面)
2.x=x(y,z),z=z(x,y)同理
3.如果有几个面,拆开算
4.如果f=1,求的是曲面的面积

第二类曲面积分(对坐标的曲面积分)

都在面的表面
标志为:dxdy
1.从正面(坐标轴正向)看过去如果看得见面,则取正号,如果看不见,则取负号,如果是一条线,则为0
2.将三个未知量化成两个,注意正负号,作出投影面Dxy
3.第几卦限是按逆时针旋转的

判断级数的敛散性

1,判断正项级数的敛散性

  • 正项级数每一项都是正的,并且是和的形式
  • 首先看 l i m n → ∞ u n = 0 lim_{n\to \infty }u_n=0 limnun=0,不是就发散,是的话继续判断,再看 u n 中 能 否 提 出 n 次 方 , 可 以 的 话 柯 西 判 别 法 , 看 l i m n → ∞ u n n , 结 果 等 于 1 , 不 能 确 定 , 小 于 1 是 收 敛 , 大 于 1 发 散 , 如 果 不 能 提 出 n 次 方 , 就 比 值 审 敛 法 ( 达 朗 贝 尔 判 别 法 ) , l i m n → ∞ , ρ 的 值 的 判 别 法 与 上 述 相 同 , 最 后 是 比 较 审 敛 法 , 可 以 是 极 限 形 式 u_n中能否提出n次方,可以的话柯西判别法,看lim_{n \to \infty }\sqrt[n]{u_n},结果等于1,不能确定,小于1是收敛,大于1发散,如果不能提出n次方,就比值审敛法(达朗贝尔判别法),lim_{n \to \infty},\rho 的值的判别法与上述相同,最后是比较审敛法,可以是极限形式 unn西limnnun ,111nlimn,ρ
  • 比较基准:(等比级数看的是绝对值,p级数不带绝对值)
    等比级数: a q n aq^n aqn,|q|<1时收敛,|q|>=1时发散
    p级数(p=1时为调和级数): a p n \frac{a}{p^n} pna,当p>1时收敛,p<=1时发散
    (比较时注意a+b,ab, a 2 + b 2 a^2+b^2 a2+b2,的关系以及x>0时,x>sinx)

2.判断交错级数的敛散性(提到的Un均为正数部分

  • 正负或者负正交替
  • 莱布尼茨定理判断:首先 lim ⁡ n → ∞ u n 是 否 趋 近 于 0 , 否 的 话 发 散 , 若 u n > = u n + 1 , 收 敛 \lim_{n \to \infty}u_n是否趋近于0,否的话发散,若u_{n}>=u_{n+1},收敛 limnun0un>=un+1,

3.判断绝对收敛/条件收敛(条件收敛这个名词值针对交错级数)

  • 正项级数:发散就是发散,收敛就是绝对收敛
  • 交错级数:发散就是发散,收敛若去掉符号仍旧收敛就是绝对收敛,反之为条件收敛

幂级数( ∑ n = 0 ∞ a n ( x + b ) n \sum_{n=0}^{\infty}a_n(x+b)^n n=0an(x+b)n)

1.已知幂级数在某点收敛/发散,判断在另一个点是收敛还是发散
eg:若级数在x= x 0 x_0 x0时收敛, ∣ x + b ∣ < ∣ x 0 + b ∣ |x+b|<|x_0+b| x+b<x0+b,在该点也是绝对收敛
若级数在x= x 0 x_0 x0时发散, ∣ x + b ∣ > ∣ x 0 + b ∣ |x+b|>|x_0+b| x+b>x0+b,在该点就发散
2.求幂级数的收敛域/收敛区间(收敛域是带边界值的)

  • b=0的情况
    l i m n → ∞ ∣ a n + 1 a n ∣ = ρ lim_{n\to \infty}|\frac{a_{n+1}}{a_n}|=\rho limnanan+1=ρ
    R= 1 / ρ 1/\rho 1/ρ( ρ 不 等 于 0 \rho不等于0 ρ0)
    R=正无穷( ρ 等 于 0 \rho等于0 ρ0
    R=0( ρ = 正 无 穷 \rho=正无穷 ρ=)
  • b不等于0
    令t=x+b
    算出收敛半径
    收敛区间为|t|<2,即算出x的范围,再算收敛域
  • 级数缺少奇次幂或偶次幂时,上述定理不能直接使用,使用比值审敛法求收敛半径 l i m ∣ u n + 1 u n ∣ < 1 lim|\frac{u_{n+1}}{u_n}|<1 limunun+1<1

3.求幂级数在收敛域内的和函数S(x)(幂级数s(0)一般等于0或1,有时候不是,需要算一下)

  • 求和函数一定要求收敛域
  • 当an是分式形式时,先求导,再积分,
    s ( x ) , = . . . . . s(x)^,=..... s(x),=.....
    s ( x ) = ∫ 0 x s ( x ) , d x s(x)=\int_0^xs(x)^,dx s(x)=0xs(x),dx
  • an不是分式形式时,先积分,再求导

微分方程

符合 y , + P ( x ) y = Q ( x ) y^,+P(x)y=Q(x) y,+P(x)y=Q(x)的格式,求通解
1.Q(x)=0,则为一阶齐次线性微分方程
通解为 y = c e − ∫ p ( x ) d x y=ce^{-\int p(x)dx} y=cep(x)dx
2.Q(x)不为0,只用常数变易法,将c换成u(x),求导,带入原式,求出 u , ( x ) u^,(x) u,(x),再求出u(x),得结果,
y = e − ∫ p ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x d x + c ) y=e^{-\int p(x)dx}(\int Q(x)e^{\int P(x)dx}dx+c) y=ep(x)dx(Q(x)eP(x)dxdx+c)
3.遇到y/x类型的,将u设为y/x

纯公式:

三角函数相关公式

1.点火公式
∫ 0 π s i n n θ d θ = 2 ∫ 0 π 2 s i n n θ d θ \int_0^\pi sin^n\theta d\theta=2\int_{0}^{\frac{\pi}{2}}sin^n\theta\text{d}\theta 0πsinnθdθ=202πsinnθdθ

∫ 0 π 2 s i n n θ d θ \int_{0}^{\frac{\pi}{2}}sin^n\theta\text{d}\theta 02πsinnθdθ= ∫ 0 π 2 c o s n θ d θ \int_{0}^{\frac{\pi}{2}}cos^n\theta\text{d}\theta 02πcosnθdθ
n为偶数:= n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 1 2 π 2 \frac{n-1}{n}\frac{n-3}{n-2}\frac{n-5}{n-4}...\frac{1}{2}\frac{\pi}{2} nn1n2n3n4n5...212π
n为奇数:= n − 1 n n − 3 n − 2 n − 5 n − 4 . . . 2 3 \frac{n-1}{n}\frac{n-3}{n-2}\frac{n-5}{n-4}...\frac{2}{3} nn1n2n3n4n5...32
2.三角变换
c o s 2 θ = c o s θ 2 − s i n θ 2 cos2\theta=cos\theta^2-sin\theta^2 cos2θ=cosθ2sinθ2

积分变限函数求导

在这里插入图片描述

泰勒及麦克劳林公式

在这里插入图片描述(此为麦克劳林公式,即为特殊的泰勒公式)
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

积分表

在这里插入图片描述
在这里插入图片描述

  • 19
    点赞
  • 82
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值