【论文阅读笔记】Large Multimodal Agents: A Survey

本文概述了大型多模态智能体(LMA)的研究进展,重点关注其感知、规划、执行和记忆组件,以及多智能体协作和评价体系。文章强调了从单一文本向多模态转换的挑战和解决策略,探讨了LMA在不同领域的应用,如机器人、自动驾驶等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[写在开头] 深度学习小白,如果有不对的地方请大家多指正,对说的就是你大佬!

论文名称: Large Multimodal Agents: A Survey
论文链接: https://arxiv.org/pdf/2402.15116.pdf

Large Multimodal Agents (LMAs) 大型多模态智能体

Motivation
大语言模型的诞生赋予了 agent 类人的决策和推理能力,如何将 LLM-based agent 拓展到多模态领域是学界新兴的研究热点。下面这张图是2022年11月到2024年2月在LMA领域的一些研究工作。
关于LLM-based agent的综述有很多,但在多模态领域的综述文章比较少,因此写了这篇文章总结相关工作。
在这里插入图片描述

文章结构

  1. LMA的四个核心组件: 感知、规划、执行、记忆
  2. LMA的四种类型
  3. 多智能体协作
  4. LMA的评价体系
  5. LMA的应用场景

LMA的核心组成: Perception、planning、action、memory

在这里插入图片描述

Pe

### 关于多模态大模型的研究概述 多模态大语言模型(Multimodal Large Language Models, MLLMs)近年来成为人工智能领域的重要研究方向之一。这些模型能够处理多种数据形式,如文本、图像、音频和其他传感器输入,从而实现更加复杂的任务解决能力[^1]。 #### 自动驾驶中的多模态大语言模型 在自动驾驶场景下,MLLMs 的应用尤为突出。它们可以融合来自摄像头、激光雷达和毫米波雷达等多种传感器的数据,提供全面的环境感知能力。一篇重要的综述文章《A Survey on Multimodal Large Language Models for Autonomous Driving》详细探讨了这一领域的进展及其挑战[^2]。该文章不仅涵盖了自动驾驶技术的发展历程,还分析了多模态语言模型如何逐步融入到自动驾驶系统中,并提出了未来可能的研究方向。 #### 数据集与基准测试 为了推动多模态大语言模型的进步,研究人员创建了许多公开可用的数据集和评估标准。例如,在自动驾驶领域,特定的任务驱动型数据集被用来验证模型的有效性和鲁棒性。这些资源对于促进学术界和工业界的协作至关重要[^3]。 #### 跨语言支持的重要性 尽管目前大多数先进的大型语言模型主要专注于单一语言(通常是英语),但也有不少努力旨在构建具备跨语言功能的版本。比如 VisCPM 和 Qwen-VL 这样的项目展示了通过精心设计的训练策略来增强模型对不同自然语言的支持程度的可能性。 ```python # 示例代码展示如何加载一个多模态预训练模型并执行推理操作 from transformers import AutoProcessor, CLIPModel model_name = "openai/clip-vit-base-patch32" processor = AutoProcessor.from_pretrained(model_name) model = CLIPModel.from_pretrained(model_name) image_url = "https://example.com/sample_image.jpg" text_input = ["a photo of a cat", "a photo of a dog"] inputs = processor(text=text_input, images=image_url, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get probability distribution over texts print(probs) ``` 上述代码片段演示了一个简单的例子,说明如何利用现有的开源工具包加载预先训练好的多模态模型来进行基本推断。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值