【ENVI】精度验证——基于感兴趣区进行混淆矩阵分析

本文介绍了如何在ERDAS中进行遥感数据的监督分类和处理,采用混淆矩阵进行精度验证,包括总体分类精度和Kappa系数的计算。步骤包括数据转换、假彩色合成、建立感兴趣区域以及利用ENVI进行混淆矩阵分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、软件

         ERDAS做精度验证麻烦,这里采用ENVI 5.6。

二、数据

        1.在ERDAS上经过监督分类并处理后的数据

        2.研究区域的原始影像 

三、原理

1.简述

        对分类结果进行评价,确定分类的精度和可靠性。有两种方式用于精度验证:一是混淆矩阵,二是 ROC 曲线,比较常用的为混淆矩阵,ROC 曲线可以用图形的方式表达分类精度,比较抽象。

        真实参考源可以使用两种方式:一是标准的分类图,二是选择的感兴趣区(验证样本区)。 真实的感兴趣区验证样本的选择可以是在高分辨率影像上选择,也可以是野外实地调查获取或者对原始影像进行目视解译,原则是获取的类别参考源的真实性。

        本例受条件限制,采用混淆矩阵进行精度验证,感兴趣区作为验证样本,感兴趣区域来源为对原始影像的目视解译。

2.混淆矩阵的评价指标

总体分类精度
        等于被正确分类的像元总和除以总像元数。被正确分类的像元数目沿着混淆矩阵的对角线分布,总像元数等于所有真实参考源的像元总数。

Kappa 系数
        它是通过把所有真实参考的像元总数(N)乘以混淆矩阵对角线(XKK)的和,再减去某一类中真实参考像元数与该类中被分类像元总数之积之后,再除以像元总数的平方减去某一类中真实参考像元总数与该类中被分类像元总数之积对所有类别求和的结果。

四、步骤

1.ERDAS数据转ENVI数据

        1.1导入处理后的数据后,

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值