机器学习基础算法教程总结
一、教程要点总结
黑板内容呈现了机器学习(ML)的部分关键概念与算法,涵盖了从基础平台到具体算法及其应用案例。机器学习是人工智能的核心领域,致力于让计算机系统通过数据学习规律并进行预测或决策。
(一)机器学习平台
AI 平台是开展机器学习任务的基础支撑环境,它集成了数据处理、模型训练、算法开发等多种功能。像 TensorFlow、PyTorch 等知名平台,为开发者提供了丰富的工具和接口,方便构建和部署机器学习模型。
(二)回归算法
- 线性回归:作为有监督学习算法,旨在找出变量间的线性关系,用于预测连续数值型结果。其原理是通过最小化预测值与真实值之间的误差平方和,确定最佳拟合直线(或超平面)的参数。
- 逻辑回归:虽名为回归,实则用于分类问题的有监督学习算法。借助逻辑函数(如 Sigmoid 函数)将线性回归的输出转换为概率值,以此判断样本所属类别。
(三)KNN(K - 近邻算法)
KNN 属于有监督学习算法,核心思想是基于样本间的距离度量。对于新样本,通过在训练集中找到与其距离最近的 K 个邻居,依据这些邻居的类别来决定新样本的类别。距离度量方式常见有欧氏距离、曼哈顿距离等。
(四)K - means 算法
K - means 是无监督学习算法,主要用于聚类任务。算法通过不断迭代,将数据点划分到 K 个不同的簇中,使簇内数据点相似度高,簇间数据点相似度低。
二、案例展示
(一)线性回归案例 - 波士顿房价预测
- 设计思路:收集波士顿地区房屋的相关特征数据,如房间数量、房屋面积、房龄、周边设施等作为自变量,房价作为因变量。利用线性回归算法构建模型,探索这些特征与房价之间的线性关联。
- 代码实现(Python)
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
# 加载波士顿房价数据集
boston = load_boston()
X = boston.data
y = boston.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 实例化线性回归模型
model = LinearRegression()
# 训练模型
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
- 运行结果:通过计算均方误差(MSE)等指标评估模型性能,例如得到 MSE 值为某一具体数值(如 20.5) ,可衡量预测房价与真实房价之间的平均误差程度。
(二)逻辑回归案例 - 疾病诊断
- 设计思路:收集患者的身体指标数据,如年龄、血压、血糖、血脂等作为特征,是否患病作为分类目标。运用逻辑回归算法建立模型,根据患者指标预测患病概率。
- 代码实现(Python)
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
# 加载乳腺癌数据集(可类比疾病诊断场景)
cancer = load_breast_cancer()
X = cancer.data
y = cancer.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 实例化逻辑回归模型
model = LogisticRegression()
# 训练模型
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
- 运行结果:可通过计算准确率、召回率、F1 值等指标评估模型分类效果,比如准确率达到 95% ,表示模型正确分类的样本占总测试样本的比例。
(三)KNN 案例 - 水果分类
- 设计思路:提取水果的特征,如颜色、形状、大小、重量等。对于新的未知水果样本,计算其与训练集中各水果样本的距离,找出最近的 K 个邻居,依据邻居类别确定新水果类别。
- 代码实现(Python)
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris # 这里用鸢尾花数据集类比水果分类,原理相同
from sklearn.model_selection import train_test_split
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 实例化KNN模型,设置K值
knn = KNeighborsClassifier(n_neighbors=3)
# 训练模型
knn.fit(X_train, y_train)
# 预测
y_pred = knn.predict(X_test)
- 运行结果:同样通过准确率等指标评估,若准确率为 90% ,说明模型在测试集上正确分类水果的比例。
(四)K - means 案例 - 客户分群
- 设计思路:收集客户的消费行为数据,如消费频率、消费金额、购买品类偏好等。通过 K - means 算法将客户划分为不同群体,以便企业制定针对性营销策略。
- 代码实现(Python)
import numpy as np
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs # 生成模拟数据
# 生成模拟客户数据
X, y = make_blobs(n_samples=100, n_features=2, centers=3, random_state=42)
# 实例化K - means模型,设置簇数K
kmeans = KMeans(n_clusters=3)
# 训练模型
kmeans.fit(X)
# 获取聚类标签
labels = kmeans.labels_
- 运行结果:可通过轮廓系数等指标评估聚类效果,轮廓系数越接近 1,表明聚类效果越好,例如得到轮廓系数为 0.6 ,说明聚类有一定合理性。
三、综合总结
通过对这些机器学习算法和案例的学习,我们了解到不同算法的适用场景和实现方式。在实际应用中,需根据具体问题选择合适算法,同时要重视数据预处理、模型评估与调优等环节,以提升模型性能和预测准确性。机器学习在众多领域有着广泛应用前景,从金融风险预测到图像识别、自然语言处理等,持续学习和实践对于掌握这一强大技术至关重要
17万+

被折叠的 条评论
为什么被折叠?



