💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
核密度估计(KDE)是一种非参数方法,用于估计概率密度函数。在数据生成方面,在以下几个方面进行研究:
1. **基本原理理解**:首先,你需要理解KDE的基本原理。KDE通过在每个数据点周围放置一个核函数(比如高斯核),然后将这些核函数加和起来来估计概率密度函数。
2. **核函数选择**:研究不同类型的核函数对生成的数据的影响。常用的核函数包括高斯核、矩形核、三角核等。你可以比较它们在不同数据集上生成的效果。
3. **带宽选择**:带宽控制了核函数的宽度,从而影响了估计的平滑程度。研究不同带宽对生成数据的影响,包括过度平滑和过度拟合的问题。
4. **样本大小影响**:研究样本大小对生成数据的影响。当样本较小时,KDE可能会过度拟合,而样本较大时,KDE可能会更好地捕捉潜在的概率密度。
5. **多维数据生成**:KDE不仅适用于一维数据,还适用于多维数据。研究多维数据生成的方法和相关问题。
6. **交叉验证**:使用交叉验证等技术来选择最优的核函数和带宽参数,以确保生成的数据与原始数据分布尽可能接近。
7. **应用场景**:研究KDE在不同应用场景下的数据生成效果,例如异常检测、分类等。
可以通过模拟数据集并对生成的数据与原始数据分布进行比较来进行这些研究。
📚2 运行结果
部分代码:
%% KDE
% 定义核密度估计的带宽
bandwidth = 0.4; % 您可以根据您的数据调整此值
for i=1:NF
% 创建一个核密度估计器
kde = fitdist(original_data(:,i), 'Kernel', 'Bandwidth', bandwidth);
% 生成数据点数
num_samples = 1000;
% 使用估计的核密度生成合成数据
synthetic_data = random(kde, num_samples, 1);
Syn(:,i)=synthetic_data;
end
%% 用K-means聚类方法获取合成生成数据的标签
[Lbl,C,sumd,D] = kmeans(Syn,Classes,'MaxIter',10000,...
'Display','final','Replicates',10);
%% 在二维中绘制原始和生成的数据集
Feature1=1;
Feature2=3;
f1=meas(:,Feature1); % feature 1
f2=meas(:,Feature2); % feature 2
ff1=Syn(:,Feature1); % feature 1
ff2=Syn(:,Feature2); % feature 2
figure('units','normalized','outerposition',[0 0 1 1])
subplot(4,2,1)
plot(meas, 'linewidth',1); title('Original Data');
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张凡.基于核密度估计和K-L散度的旋转机械故障诊断与健康评估方法研究[D].电子科技大学,2015.DOI:10.7666/d.D662488.
[2]郑勇.基于改良的鲁棒核密度估计的数据驱动不确定集研究及实验仿真[D].重庆大学,2020.
[3]黄杰,尉永清,伊静,等.基于核密度估计的基本概率指派生成方法[J].计算机应用研究, 2020, 37(7):5.DOI:10.19734/j.issn.1001-3695.2018.11.0882.