💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
通过遗传算法的交通灯管理算法是一种创新的交通管理解决方案。该算法利用遗传算法的强大搜索和优化能力来管理交通信号灯。 遗传算法模拟了生物进化的过程,通过不断地生成、评估和改进交通灯的控制策略。首先,定义适应度函数来衡量不同交通灯控制策略的性能,例如车辆平均等待时间、道路通行能力等。然后,随机生成一组初始的交通灯控制策略作为种群。在每一代中,对这些策略进行评估,选择适应度较高的策略进行交叉和变异操作,以产生新的后代策略。这个过程不断重复,直到找到一个满意的交通灯控制策略或者达到一定的迭代次数。 这种算法可以根据实时的交通流量情况动态调整交通灯的时间分配,以提高交通效率、减少拥堵和等待时间。它能够适应不同的交通场景和需求,为城市交通管理提供了一种智能化的方法。
📚2 运行结果
主函数部分代码:
%% Starting point, clear everything in matlab
tic;
clear all;
close all;
clc;
%% Problem Formulation
FitnessFunction=@(C,g,x,c) TDi(C,g,x,c); % FitnessFunction
nLights=4; % Number of Traffic Lights
nIntersections=1; % Number of Intersections (static as 1 intersection)
VarSize=[1 nIntersections*nLights]; % Decision Chromosome genes based on number of Intersections
greenMin= 10; % Lower bound of GREEN LIGHT
greenMax= 60; % Upper bound of GREEN LIGHT
Cyclemin=60; % Lower bound of CYCLE
Cyclemax=180 ;
RoadcapacityNSWE=[20,20,20,20]; % Road Capacity for NSWE respectivelly
CarsNSWE=[20,20,11,17];
RoadCongestion1NSWE=RoadcapacityNSWE-CarsNSWE; % congestion according to free road spaces
RoadCongestionNSWE=RoadCongestion1NSWE./RoadcapacityNSWE; % Volume/Capacity RATIO
carpass=5;
%% Genetic Algorithm Parameters
MaxIt=25; % Maximum Number of Iterations
nPop=400; % Population Size
pc=0.5; % Crossover Percentage
nc=2*round(pc*nPop/2); % Number of Offsprings (parents)
pm=0.02; % Mutation Percentage
nm=round(pm*nPop); % Number of Mutants
mu=0.1; % Mutation Rate
pinv=0.2;
ninv=round(pinv*nPop);
beta=8; % Selection Pressure
%% Initialization
% Individual Structure
empty_individual.GreenNSWE=[];
empty_individual.TotalDelay=[];
% Population Structure
pop=repmat(empty_individual,nPop,1);
% Initialize Population
i=1;
current_cycle=160-12; %estw kiklos 160 seconds - 12 seconds gia kitrino
while i<=nPop
% Initialize Individual
pop(i).GreenNSWE=randi([greenMin greenMax],VarSize);
% Cycle time rules
% if(sum(CarsNSWE)<10)
% current_cycle(i)=randi([Cyclemin 80]);
% elseif(sum(CarsNSWE)<15)
% current_cycle(i)=randi([80 100]);
% elseif(sum(CarsNSWE)<20)
% current_cycle(i)=randi([100 120]);
% elseif(sum(CarsNSWE)<25)
% current_cycle(i)=randi([120 140]);
% elseif(sum(CarsNSWE)<30)
% current_cycle(i)=randi([140 160]);
% else
% current_cycle=180;
% end
% current_cycle=current_cycle(:);
if(sum(pop(i).GreenNSWE)>current_cycle)
continue;
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]黄向党. 基于车流量的交通灯动态调整策略的研究与设计[D].电子科技大学,2013.
[2]D. T ,T. Y ,N. F , et al. Investigation of Support Algorithm for Air Traffic Controllers’ Arrival Separation Management[J]. IFAC PapersOnLine,2021,54(2).