【自动管理】通过遗传算法的交通灯管理算法(Matlab实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

 通过遗传算法的交通灯管理算法是一种创新的交通管理解决方案。该算法利用遗传算法的强大搜索和优化能力来管理交通信号灯。 遗传算法模拟了生物进化的过程,通过不断地生成、评估和改进交通灯的控制策略。首先,定义适应度函数来衡量不同交通灯控制策略的性能,例如车辆平均等待时间、道路通行能力等。然后,随机生成一组初始的交通灯控制策略作为种群。在每一代中,对这些策略进行评估,选择适应度较高的策略进行交叉和变异操作,以产生新的后代策略。这个过程不断重复,直到找到一个满意的交通灯控制策略或者达到一定的迭代次数。 这种算法可以根据实时的交通流量情况动态调整交通灯的时间分配,以提高交通效率、减少拥堵和等待时间。它能够适应不同的交通场景和需求,为城市交通管理提供了一种智能化的方法。

📚2 运行结果

主函数部分代码:

%% Starting point, clear everything in matlab
tic;
clear all;
close all;
clc;

%% Problem Formulation

FitnessFunction=@(C,g,x,c) TDi(C,g,x,c);     % FitnessFunction

nLights=4;                                   % Number of Traffic Lights
nIntersections=1;                            % Number of Intersections (static as 1 intersection)

VarSize=[1 nIntersections*nLights];          % Decision Chromosome genes based on number of Intersections

greenMin= 10;                                % Lower bound of GREEN LIGHT
greenMax= 60;                                % Upper bound of GREEN LIGHT
Cyclemin=60;                                 % Lower bound of CYCLE
Cyclemax=180 ;
RoadcapacityNSWE=[20,20,20,20];              % Road Capacity for NSWE respectivelly
CarsNSWE=[20,20,11,17];
RoadCongestion1NSWE=RoadcapacityNSWE-CarsNSWE;              % congestion according to free road spaces
RoadCongestionNSWE=RoadCongestion1NSWE./RoadcapacityNSWE;   %  Volume/Capacity RATIO
carpass=5;
%% Genetic Algorithm Parameters

MaxIt=25;                                  % Maximum Number of Iterations

nPop=400;                                     % Population Size

pc=0.5;                                      % Crossover Percentage
nc=2*round(pc*nPop/2);                       % Number of Offsprings (parents)

pm=0.02;                                      % Mutation Percentage
nm=round(pm*nPop);                           % Number of Mutants
mu=0.1;                                      % Mutation Rate
 
pinv=0.2;
ninv=round(pinv*nPop);

beta=8;                                      % Selection Pressure
   
%% Initialization

% Individual Structure
empty_individual.GreenNSWE=[];
empty_individual.TotalDelay=[];

% Population Structure
pop=repmat(empty_individual,nPop,1);

% Initialize Population
i=1;
current_cycle=160-12; %estw kiklos 160 seconds - 12 seconds gia kitrino

while i<=nPop  
    
    % Initialize Individual
    pop(i).GreenNSWE=randi([greenMin greenMax],VarSize);
    
    % Cycle time rules
%     if(sum(CarsNSWE)<10)
%         current_cycle(i)=randi([Cyclemin 80]);
%     elseif(sum(CarsNSWE)<15)
%         current_cycle(i)=randi([80 100]);
%     elseif(sum(CarsNSWE)<20)
%         current_cycle(i)=randi([100 120]);
%     elseif(sum(CarsNSWE)<25)
%         current_cycle(i)=randi([120 140]);
%     elseif(sum(CarsNSWE)<30)
%         current_cycle(i)=randi([140 160]);
%     else
%         current_cycle=180;
%      end
%     current_cycle=current_cycle(:);

    if(sum(pop(i).GreenNSWE)>current_cycle)
          continue;
    end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]黄向党. 基于车流量的交通灯动态调整策略的研究与设计[D].电子科技大学,2013.

[2]D. T ,T. Y ,N. F , et al. Investigation of Support Algorithm for Air Traffic Controllers’ Arrival Separation Management[J]. IFAC PapersOnLine,2021,54(2).

🌈4 Matlab代码实现

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值