〇、代数系统
代数系统是数学中的一个重要概念,它涉及一组对象以及定义在这些对象上的运算规则。代数系统可以是抽象的,也可以是具体的。
在抽象代数中,代数系统通常由一组元素和一组操作(或称为运算)组成。这些操作可以是二元的(例如加法和乘法)或一元的(例如取负)。代数系统的运算必须符合一定的性质,例如结合律、交换律、单位元和逆元等。常见的抽象代数系统包括群、环、域和向量空间等。
只要满足两个条件就是一个代数系统:
- 集合非空
- 运算封闭
一、广群
满足最低要求的代数系统,就是广群。
二、半群
满足结合律的广群就是半群。
三、含幺半群
集合中对于运算*存在幺元 e 的半群就是含幺半群,也叫独异点。
四、群
对于每一个元素都存在逆元的含幺半群,就是群。
五、阿贝尔群
如果群中的元素对于操作*是可交换的,就称为阿贝尔群或者交换群,也叫加法群。
六、循环群
群中的所有的元素都可由一个元素 x 通过不断地*运算生成,则称为循环群,x 被称为生成元,事实上生成元往往不止一个。
七、置换群
任何一个有限群,事实上都可由一个置换群表示。
置换群(Permutation Group)是群论中的一个重要概念,它研究的是一组对象的排列及其上的运算。在置换群中,对象的排列通过置换操作来描述,而置换群则是由这些置换构成的群。
具体来说,给定一个有限集合X,一个置换是对X中元素的重新排列。每个置换可以表示为一个映射,将集合X中的元素映射到另一个元素上。这种映射可以用一个有序的元素列表来表示,其中列表中的第i个元素表示将原始集合中的第i个元素映射到的新位置。
置换群是由所有可能的置换组成的群,它的运算是置换的复合。换句话说,对于两个置换,可以将它们按照给定的顺序依次执行,得到一个新的置换。这个复合运算满足结合律、单位元和逆元的群性质。
总之,置换群是由一组对象的排列构成的群,它在群论和相关领域中具有重要的地位,并用于研究对称性和排列结构。
八、环
环(Ring)是抽象代数中的一个重要的代数结构。它由一个非空集合R和两个二元运算(加法和乘法)组成,分别记作"+“和”·"。
一个环R必须满足以下性质:
-
加法运算(+)满足封闭性:对于任意的a、b∈R,a+b仍然属于R。
-
加法运算(+)满足结合律:对于任意的a、b、c∈R,(a+b)+c = a+(b+c)。
-
加法运算(+)满足交换律:对于任意的a、b∈R,a+b = b+a。
-
存在零元素:存在一个元素0∈R,使得对于任意的a∈R,a+0 = 0+a = a。
-
存在相反元素:对于任意的a∈R,存在一个元素-b∈R,使得a+(-b) = (-b)+a = 0。
-
乘法运算(·)满足封闭性:对于任意的a、b∈R,a·b仍然属于R。
-
乘法运算(·)满足结合律:对于任意的a、b、c∈R,(a·b)·c = a·(b·c)。
-
乘法运算(·)与加法运算(+)满足分配律:对于任意的a、b、c∈R,a·(b+c) = (a·b)+(a·c)和(a+b)·c = (a·c)+(b·c)。
可以看到,对于乘法运算(·)并没有要求交换律和逆元。因此,环(Ring)可以定义为:
- 加法运算(+)是交换群;
- 乘法运算(·)是半群;
- 后者对前者满足分配率。
一个经典的例子就是<A,+,· >,其中 A 是矩阵。显然矩阵加法是一个交换群,矩阵乘法是一个半群,仅仅可结合而不可交换,乘法对加法满足分配率。因此<A,+,· >就是一个经典的环。
九、域
域的定义比环更加严格,可定义为:
- 加法运算<F,+ > 是交换群;
- 乘法运算<F-{0},· > 是交换群;
- 后者对前者满足分配率。
比如<R, +, * >就是一个经典的域。它满足加法交换群,去除0后,也是交换群,同时后者对于前者满足分配率。