求组合数专题

求组合数 Ⅰ(递推公式)

思路 O(a\cdot b)

  • 递推法预处理
    • 利用公式 C_{a}^{b} = C_{a-1}^{b-1} + C_{a-1}^{b}
    • 复杂度 O(a \cdot b) = 4*10^{6}
  • 直接查询
    • 单次查询复杂度 O(1)

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 2010;
const int mod = 1e9+7;
int c[N][N];
int get_c(int a, int b)
{
    c[0][0] = 1;
    for(int i = 1; i <= a; i++)
    {
        c[i][0] = 1;
        for(int j = 1; j <= a; j++)
        {
            c[i][j] = (c[i-1][j-1] + c[i-1][j]) % mod;
        }
    }
    
    return c[a][b];
}
int main()
{
    get_c(2000, 2000);
    
    int n;
    cin >> n;
    while (n -- ){
        int a, b;
        cin >> a >> b;
        cout << c[a][b] << '\n';
    }
}

求组合数 Ⅱ (乘法逆元、费马小定理、快速幂)

思路 O(1e5 \cdot log(p-2) + n)

  • 很明显,递推法预处理会超时。于是我们选择另一种计算组合数的方式:快速幂(处理分子的阶乘、分母的阶乘) + 费马小定理(将除以分母,在模运算中该换为,乘以分母的乘法逆元)
    • 步骤       
      • 计算阶乘 O(b_{max}) = 10^{5}
      • 快速幂求乘法逆元 O(log(p-2)) ,p = 1e9+7
    • 总复杂度 O(n \cdot (b_{max} + log(p-2))) > 10^{9}
    • 反思:不同的数据计算阶乘时重复计算了
    • 改进:预处理所有阶乘 1e5
      • (同时可以预处理所有阶乘的乘法逆元)O(1e5 * log(p-2))
    • 注意:求 \frac{a!}{(a-b)!} 时 仍不能用除法,要采用乘法逆元

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
const int mod = 1e9+7;
typedef long long ll;
ll fac[N], ifac[N];
ll qmi(ll base, ll expo)
{
    ll retv = 1;
    while(expo)
    {
        if(expo & 1) retv = retv * base % mod;
        base = base * base % mod;
        expo >>= 1;
    }
    
    return retv;
}
void init()
{
    fac[0] = ifac[0] = 1;
    for(ll i = 1; i <= 100000; i++)
    {
        fac[i] = fac[i-1] * i % mod;
        ifac[i] = qmi(i, mod-2) * ifac[i-1] % mod;
    }
}
int main()
{
    init();
    
    int n;
    cin >> n;
    while (n -- ){
        int a, b;
        cin >> a >> b;
        
        cout << fac[a] * ifac[a-b] % mod * ifac[b] % mod << '\n';
    }
}

求组合数 Ⅲ(卢卡斯定理)

思路 

  • 无它,ab值太大了,幸好最后是mod运算,用卢卡斯定理即可 C_{a}^{b} = C_{a \mod p}^{b \mod p} \cdot C_{\frac{a}{p}}^{\frac{b}{p}}
    • 条件: p是质数

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
typedef long long ll;
ll qmi(ll base, ll expo, ll mod)
{
    ll retv = 1;
    while(expo)
    {
        if(expo & 1) retv = retv * base % mod;
        base = base * base % mod;
        expo >>= 1;
    }
    
    return retv;
}
ll get_c(ll a, ll b, ll mod)
{
    
    ll res = 1;
    for(int i = 1, j = a; i <= b; i++, j--)
    {
        res = res * j % mod;
        res = res * qmi(i, mod-2, mod) % mod;
    }
    
    return res;
}
ll lucas(ll a, ll b, ll mod)
{
    if(a < mod && b < mod)return get_c(a,b,mod);
    else return get_c(a % mod, b % mod, mod) * lucas(a / mod, b / mod, mod) % mod;
}
int main()
{
    int n;
    cin >> n;
    while (n -- ){
        ll a, b, p;
        cin >> a >> b >> p;
        
        cout << lucas(a, b, p) << '\n';
    }
    
    return 0;
}

求组合数 Ⅳ(高精度乘法、质因数分解)

思路

  • 阶乘的质因数分解 + 高精度乘法
#include <bits/stdc++.h>
using namespace std;
const int N = 5010;
int primes[N], cnt;
bool st[N];
int s[N];
vector<int> v;
void get_primes(int n)
{
    for(int i = 2; i <= n; i++)
    {
        if(!st[i]) primes[++cnt] = i;
        for(int j = 1; primes[j] * i <= n; j++)
        {
            st[primes[j] * i] = true;
            if(i % primes[j] == 0) break;
        }
    }
}
int cal(int x, int p)
{
    int retv = 0;

    while(x)
    {
        retv += x/p;
        x /= p;
    }
    
    return retv;
}

vector<int> mul(vector<int> a, int b)
{
    vector<int> c;
    
    int t = 0;
    for(int i = 0; i < a.size(); i++)
    {
        t += a[i] * b;
        c.push_back(t % 10);
        t /= 10;
    }
    
    while(t)
    {
        c.push_back(t % 10);
        t /= 10;
    }
    
    return c;
}
int main()
{
    get_primes(5000);
    
    int a, b;
    cin >> a >> b;
    
    v.push_back(1);
    for(int i = 1; i <= cnt; i++)
    {
        int p = primes[i];
        s[p] = cal(a, p) - cal(a-b, p) - cal(b, p);
        for(int j = 1; j <= s[p]; j++)
            v = mul(v, p);
    }
    
    for(int i = v.size()-1; i >= 0; i--) 
        cout << v[i];
        
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值