高数基础知识2

定积分

定义

1.定积分表示函数 f(x)在区间 [a,b]上的累积效应或面积。

几何意义

1.如果 f(x)≥0,则定积分表示曲线下方的面积。

2.如果 f(x)≤0,则定积分表示曲线上方的面积的负值。

性质

1.线性性质(其中c和d是常数)

2.区间可加性(其中 a≤c≤b )

3.积分上下限交换

4.定积分中值定理

如果函数 f(x) 在闭区间 [a,b] 上连续,则存在 c∈[a,b],使得:

微积分基本公式

1.牛顿-莱布尼茨公式

其中,F(x)是 f(x)的一个原函数,即 F′(x)=f(x)。

2.微积分基本定理(微积分基本定理分为两部分,分别描述了积分上限函数的性质和定积分的基本公式)

  • 第一部分(第一基本定理表明不定积分是微分的逆运算,保证了某连续函数的原函数的存在性)

        如果 f(t) 在区间 [a,b]上连续,则积分上限函数

        

        在区间 [a,b] 上可导,并且其导数为:

        

  • 第二部分(第二基本定理则提供了定积分和不定积分之间的联系,使得定积分的计算变得简便)

        如果 F(x)是 f(x)的一个原函数,即 F′(x)=f(x),则:

        

定积分换元法

1.步骤

  • 选择合适的变量替换: 选择一个合适的变量替换 t=g(x),使得积分变得更简单,并求反函数:

  • 求导数: 对 x 的导数

        

  • 替换积分变量: 将原积分中的 x 替换为 t,并将 dx 替换为

        

  • 确定新的积分上下限: 将原积分的上下限 a 和 b 替换为新的上下限 t 的值。即 t 的下限为 t1,上限为 t2。

  • 求解新积分: 求解新的定积分

        

多远函数

定义

1.设函数 f(x,y) 在点 (a,b) 的某个去心邻域内有定义。如果对于任意给定的正数 ϵ,总存在正数 δ,使得当

时,总有∣f(x,y)−L∣<ϵ,则称 L 为函数 f(x,y)在点 (a,b)处的极限,记作:

2.几何意义

  • 当点 (x,y)从任意方式趋近于点 (a,b) 时,函数 f(x,y) 的值趋近于 L。换句话说,函数图像在二维平面的点 (a,b)附近趋近于一个三维立体平面上的点 (a,b,L)。可将(a,b)想象为(a,b,L)投影在二维平面的点。
  • 如果 (x,y)从不同方式趋近于点 (a,b),函数 f(x,y) 的值不相等,则表示 f(x,y) 不存在。

偏导数

1.设函数 f(x,y) 在点 (x0,y0) 的某个邻域内有定义。如果极限:

存在,则称此极限为函数 f(x,y)在点 (x0,y0) 处对 x 的偏导数,记作:

如果极限:

存在,则称此极限为函数 f(x,y)在点 (x0,y0)处对 y的偏导数,记作:

2.偏导数的计算方法:对于二元函数z=f(x,y),求z对x的偏导数时,将y看作常量,对x求导;求z对y的偏导数时,将x看作常量,对y求导。

例子:

  • 对x求偏导数

        

  • 对y求偏导数

        

全微分

1.定义:如果函数z=f(x, y)在点(x, y)处的全增量

可以表示为

其中A、B不依赖于Δx, Δy,仅与x, y有关,ρ趋近于0(ρ=√[(Δx)²+(Δy)²]),此时称函数z=f(x, y)在点(x, y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即dz=AΔx +BΔy。

2.可维的必要条件

若z=f(x,y)在(x,y)点处可微,则偏导数

 

存在,并且  

3.可微分的充分条件

z=f(x,y)在(x,y)的某个邻域内有连续的偏导数

则在(x,y)处可微

4.例子

  • 求在(1,2)处的全微分

  • 分别求出x和y的偏导数

  • 求出(1,2)处x和y的偏导数

  • 所以在(1,2)处的全微分为

5.近似计算

  • z=f(x, y)在点(x, y)处的全增量为

  • 全微分为

  • 在计算中我们通常使

  • 所以

6.例子

  • 计算

  • 求x和y的偏导数

  • 将x、y、Δx、Δy带入

梯度(梯度是一个向量,表示多元函数在某一点处的最大变化率和变化方向)

1.定义:设 f(x1,x2,…,xn)是一个定义在 Rn(n维欧几里得空间) 上的多元函数,函数 f在n维向量点 a=(a1,a2,…,an)处的梯度定义为:

其中

是函数 f 在点 a 处对第 i 个自变量的偏导数。

2.性质

  • 最大变化率:梯度 ∇f(a) 的方向是函数 f在点 a 处变化率最大的方向。

  • 变化率:梯度 ∇f(a) 的大小(模)是函数 f 在点 a 处沿梯度方向的变化率

沿梯度方向是是函数 f在点 a 处变化率增加最大的方向;沿梯度反方向是是函数 f在点 a 处变化率减小最大的方向;沿梯度垂直方向函数 f在点 a 处变化率为0。

梯度下降

1.梯度下降是一种优化算法,用于寻找多元函数的最小值。其基本思想是沿着函数的负梯度方向逐步更新参数,以减少函数值。

2.算法步骤

  • 初始化:选择一个初始点 x0
  • 迭代更新:对于每次迭代 k,计算当前点的梯度,并更新参数,其中,η 是学习率(步长),控制每次更新的步幅。

        

  • 终止条件:当梯度的模足够小或达到预设的迭代次数时,停止迭代。通常,终止条件可以是以下几种:

        (1)梯度的模足够小:当梯度的模(或范数)

                

          小于某个阈值时,停止迭代。

        (2)达到预设的迭代次数:当迭代次数达到预设的最大迭代次数时,停止迭代。

        (3)函数值变化足够小:当函数值的变化

                

            小于某个阈值时,停止迭代。

3.学习率(学习率 η是一个重要的超参数,控制着每次更新的步幅 )

  • 学习率过大:如果步幅过大,算法可能会“跳过”最优解,导致在最优解附近来回震荡。

  • 学习率过小:可能导致算法收敛速度过慢。

4.例子

  • 使用梯度下降法寻找其最小值

  • 初始化:选择初始点 x0=(3,4)。
  • 计算梯度 ,在点 (3,4) 处:∇f(3,4)=(6,8)

  • 选择学习率:设 η=0.1
  • 更新参数

  • 继续迭代

        (1)在点 (2.4,3.2) 处计算梯度

                

        (2)更新参数                    

        (3)继续迭代,直到满足终止条件

二重积分

二重积分是多元微积分中的一个重要概念,用于计算二维区域上的函数积分。它通常用于计算平面区域上的面积、质量、重心等问题。二重积分的基本思想是将一个二维区域分割成无数个小区域,然后在每个小区域上计算函数值的积分。

1.定义:设 f(x,y)f(x,y) 是定义在平面区域 D 上的函数,二重积分记作:

其中 dA表示面积元素。

2.几何意义

如果 f(x,y)是非负函数,二重积分

表示以 D 为底、以 f(x,y)为顶的曲顶柱体的体积。

3.二重积分的计算1步骤-直角坐标系

在直角坐标系下,二重积分可以表示为两个定积分的乘积:

其中 D 是由 x=a 到 x=b 以及 y=g(x)到 y=h(x) 围成的区域。

  • 确定积分区域 D:首先,你需要确定积分区域 D的边界。这个区域可以是矩形、圆形、多边形等。

  • 设置积分限:根据积分区域 D,设置积分的限。例如,对于直角坐标系中的矩形区域,积分限通常是 a≤x≤b 和 c≤y≤d。

  • 写出积分表达式:根据积分限写出二重积分的表达式:

        

        

  • 计算内层积分:先对 y 进行积分,得到关于 x 的表达式。

  • 计算外层积分:再对 x 进行积分,得到最终的积分值。

4.例子

计算下列二重积分,其中 D 是由 y=x 和 y=x^2 围成的区域。

根据 y=x 和 y=x^2画出图形,确定x和y的取值范围

写出积分表达式

计算内层积分

计算外层积分

5.二重积分的计算步骤-极坐标系

(1)极坐标系的二重积分计算步骤同直角坐标系,不同的是需要将直角坐标系的坐标转换为极坐标。

(2)极坐标系的基本概念

  • 原点:极坐标系的原点称为极点(通常记作 O)。

  • 极径:从极点到某一点的距离称为径向距离(通常记作 r)。

  • 极角:从极点到某一点的射线与极轴(通常是正 xx 轴)之间的角度称为极角(通常记作 θ)。

给定点的极坐标 (r,θ),可以转换为直角坐标 (x,y):

        

在极坐标下,二重积分的表达式为:

        

其中 r 和 θ 分别是极径和极角。

注意:转换为极坐标系的二重积分中需要多加一个r ,这个最容易忘记。

6.例子

计算 下列二重积分,其中 D 是单位圆

转换坐标系

确定θ和r的范围

写出积分表达式

计算内层积分

计算外层积分

所以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值