图像处理之目标检测
目标检测认知
- Object Detection,是指在给定的图像或视频中检测出目标物体在图像中的位置和大小,并进行分类或识别等相关任务。
- 目标检测主要是将目标的分割和识别合二为一。
- 目标检测的核心关键:What(是什么)、Where(在哪里)
使用场景
目标检测用于以下场景:
- 图像处理;
- 自动驾驶:检测周围的车辆、行人、交通灯、道路标志等;
- 安防监控:监控公共场,发现异常行为,保障公共安全;
- 人脸检测;
- 医学影像分析:在医学影像方面可以识别肿瘤、组织变异等,用于医疗辅助;
- 无人机应用:识别特定目标,引导无人机飞行,比如监测天气、线路检测、搜寻救援、军事等;
- 缺陷检测:工业;
目标识别与标注
- 目标识别包含了分类 + 坐标位置(x, y, w, h):What、where
目标检测网络基础
目标检测方法
Detection主要分为以下三个支系:
one-stage系 | two-stage系 | multi-stage系 | |
---|---|---|---|
主要算法 | YOLO系列、SSD、RetinaNet | Fast R-CNN、Faster R-CNN | R-CNN、SPPNet |
检测精度 | 较低(随着网络的改进,精度也不低) | 较高 | 极高 |
检测速度 | 较快(达到实时视频流级别) | 较慢,5 fps | 极慢 |
鼻祖 | YOLOv1 | Fast R-CNN | R-CNN |
two-stage(包含全连接层)
1.双阶段,两部到位,特点如下:
- 候选区域生成:第一阶段生成候选区域(Region Proposals);
- 区域分类和回归:第二阶段对候选区域进行分类和回归,即对每个候选区域进行目标分类和位置精修。
- 代表算法:R-CNN(Region-CNN)系列,包括Fast R-CNN、Faster R-CNN、Mask R-CNN等。
2.基本流程:
one-stage(不包含全连接层,依赖不同卷积实现不同功能)
1.单阶段,一步到位,特点如下:
- 端到端训练:直接从图像中提取特征并进行分类和回归,即同时进行目标分类和位置回归。
- 实时性高:由于仅有一个阶段,计算速度快,适合实时应用。
- 代表算法:YOLO(You Only Look Once)系列、SSD等。
2.基本流程:
目标检测指标
目标框指标
- 在目标检测中,每个检测出的目标物体通常都会标注一个框(Bounding Box),用于表示目标的位置和大小,这个框叫目标框。
IoU(预测框与真实框的重合率)
- 基础英文单词:【交集】Intersection 【并集】Union
- 前景目标交并比:𝐼𝑜𝑈=A∩BA∪B
- loU(Intersectio