目标检测初始

图像处理之目标检测

目标检测认知

  • Object Detection,是指在给定的图像或视频中检测出目标物体在图像中的位置大小,并进行分类或识别等相关任务。
  • 目标检测主要是将目标的分割和识别合二为一。
  • 目标检测的核心关键:What(是什么)、Where(在哪里)

使用场景

目标检测用于以下场景:

  • 图像处理;
  • 自动驾驶:检测周围的车辆、行人、交通灯、道路标志等;
  • 安防监控:监控公共场,发现异常行为,保障公共安全;
  • 人脸检测;
  • 医学影像分析:在医学影像方面可以识别肿瘤、组织变异等,用于医疗辅助;
  • 无人机应用:识别特定目标,引导无人机飞行,比如监测天气、线路检测、搜寻救援、军事等;
  • 缺陷检测:工业;

目标识别与标注

  • 目标识别包含了分类 + 坐标位置(x, y, w, h):What、where

目标检测网络基础

目标检测方法

Detection主要分为以下三个支系:

one-stage系 two-stage系 multi-stage系
主要算法 YOLO系列、SSD、RetinaNet Fast R-CNN、Faster R-CNN R-CNN、SPPNet
检测精度 较低(随着网络的改进,精度也不低) 较高 极高
检测速度 较快(达到实时视频流级别) 较慢,5 fps 极慢
鼻祖 YOLOv1 Fast R-CNN R-CNN

two-stage(包含全连接层)

1.双阶段,两部到位,特点如下:

  • 候选区域生成:第一阶段生成候选区域(Region Proposals);
  • 区域分类和回归:第二阶段对候选区域进行分类和回归,即对每个候选区域进行目标分类和位置精修。
  • 代表算法:R-CNN(Region-CNN)系列,包括Fast R-CNN、Faster R-CNN、Mask R-CNN等。

2.基本流程:

one-stage(不包含全连接层,依赖不同卷积实现不同功能)

1.单阶段,一步到位,特点如下:

  • 端到端训练:直接从图像中提取特征并进行分类和回归,即同时进行目标分类和位置回归。
  • 实时性高:由于仅有一个阶段,计算速度快,适合实时应用。
  • 代表算法:YOLO(You Only Look Once)系列、SSD等。

2.基本流程:

目标检测指标

目标框指标

  • 在目标检测中,每个检测出的目标物体通常都会标注一个框(Bounding Box),用于表示目标的位置和大小,这个框叫目标框。
IoU(预测框与真实框的重合率)
  • 基础英文单词:【交集】Intersection 【并集】Union
  • 前景目标交并比:𝐼𝑜𝑈=A∩BA∪B
  • loU(Intersectio
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值