信号与系统笔记

非电信专业

一、信号的基本概念和分类

1、信号的分类

(1)确定信号和随机信号

         确定信号:能用确定时间函数表示的信号。

         随机信号:不能用确切函数表示的信号。

(2)连续信号和离散信号

         连续(时间)信号:连续时间范围内(-\infty <t<+\infty )有定义的信号;若其函数值也连续,则称模拟信号。

         离散(时间)信号:仅在一些离散的瞬间才有定义的信号;当取值为规定数值时,则成数字信号。

(3)周期信号与非周期信号

         周期信号是定义在(-\infty ,+\infty )区间,每隔一段时间T(或整数N),按相同规律重复变化的信号。

         不具有周期性的信号称为非周期信号。

①连续信号的周期

         f(t)=f(t+mT),m=0,\pm 1,\pm 2,\cdots

         设周期信号f_{1}(t)=sin(\omega _1t),f_{2}(t)=sin(\omega _2t),\cdots 的周期分别为T_{1},T_{2},\cdots 。

         若它们之和仍为周期信号,则必有T=m_{1}T_{1}=m_{2}T_{2}=\cdots ,即TT_1,T_2,\cdots 的最小公倍数(最小公倍数必须是正整数),那么

         m_{1}:m_{2}:\cdots =\frac{T}{T_{1}}:\frac{T}{T_{2}}:\cdots=\frac{2\pi}{T_{1}}:\frac{2\pi}{T_{2}}:\cdots=\omega _{1}:\omega _{2}:\cdots (注意无需化简),根据T=m_{1}T_{1}=m_{2}T_{2}=\cdots 即可求出T

②离散信号的周期

         f[k]=f[k+mN],m=0,\pm 1,\pm 2,\cdots 

         设正选序列f[k]=sin[\beta k]为周期序列,则有

         (注:令f[k]=sin[\beta k]=sinK=f[K],则其周期N=2\pi

         f[k]=sin[\beta k]=sin[\beta k+m\cdot 2\pi]=sin[\beta (k+m\frac{2\pi}{\beta })]=\xrightarrow[]{N=\frac{2\pi}{\beta }}f[k]=sin[\beta (k+mN)]

         若\frac{2\pi}{\beta }为整数,则其周期N=\frac{2\pi}{\beta };若\frac{2\pi}{\beta }为有理数,则其周期N=M\frac{2\pi}{\beta }M为使N为整数的最小倍数;若\frac{2\pi}{\beta }为无理数,则该序列为非周期序列。

③总结

         连续正弦信号一定是周期信号,而正弦序列不一定是周期序列;

         两个连续周期信号之和不一定是周期信号,而两个周期序列之和一定是周期序列。

(4)能量信号与功率信号

①对连续信号

         将信号f(t)施加于1\Omega电阻上,它所消耗的瞬时功率为|f(t)|^2,在区间(-\infty ,+\infty )的能量和平均功率(归一化功率)定义为

         E=\int_{-\infty }^{+\infty }|f(t)|^2dtP=\lim_{T\rightarrow \infty }\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}|f(t)|^2dt

         能量有限信号:信号的能量E<\infty,简称能量信号,此时P=0

         功率有限信号:信号的功率P<\infty,简称功率信号,此时E=\infty

②对离散信号

         能量信号:满足E=\sum_{k=-\infty }^{+\infty }|f[k]|^2<\infty的离散信号。

         功率信号:满足P=\lim_{N\rightarrow \infty }\frac{1}{N}\sum_{k=-\frac{N}{2}}^{\frac{N}{2}}|f[k]|^2<\infty的离散信号。

③总结

         时限信号(仅在有限时间区间内不为零)为能量信号;

         周期信号为功率信号:

         非周期信号可能是能量信号,也可能是功率信号:

         有些信号既不是能量信号也不是功率信号,如f=e^t

2、基本信号

(1)连续信号

①阶跃函数:u(t)=\left\{\begin{matrix} 0,&t< 0 \\ 1,&t> 0 \end{matrix}\right.

②冲激函数:\delta (t)=\frac{\mathrm{d} u(t)}{\mathrm{d} t}=\left\{\begin{matrix} \infty , &t=0 \\ 0,&t\neq 0 \end{matrix}\right.

         f(t)\delta (t-t_0)=f(t_0)\delta (t-t_0)

         \int_{-\infty }^{\infty }f(t)\delta (t-t_0)dt=f(t_0)

         \delta (at)=\frac{1}{|a|}\delta (t),a\neq 0

         f(t)*\delta (t-t_0)=\int_{-\infty }^{\infty }f(\tau )\delta (t-t_0-\tau )d\tau =f(t-t_0)

冲击偶信号:{\delta }'(t)=\frac{\mathrm{d} \delta (t)}{\mathrm{d} t}

         f(t){\delta }'(t-t_0)=-{f}'(t_0)\delta (t-t_0)+f(t_0){\delta }'(t-t_0)

         \int_{-\infty }^{\infty }f(t){\delta }'(t-t_0)dt=-{f}'(t_0)

         {\delta }'(at)=\frac{1}{a|a|}{\delta }'(t),a\neq 0

         f(t)*{\delta }'(t-t_0)=\int_{-\infty }^{\infty }f(\tau ){\delta }'(t-t_0-\tau )d\tau ={f}'(t-t_0)

总结

         \int_{+\infty }^{-\infty }f(t)\delta ^{(n)}(t-t_0)dt=(-1) ^nf^{(n)}(t-t_0)

         \delta ^n(at)=\frac{1}{|a|}\frac{1}{a^n}\delta ^n(t)

③斜坡信号

         r(t)=\int_{-\infty }^{t}u(\tau )d\tau =\left\{\begin{matrix} t, & t\geq 0\\ 0, & t< 0 \end{matrix}\right.

(2)离散信号

①单位脉冲序列

         \delta [k]=\left\{\begin{matrix} 1, &k=0 \\ 0, & k\neq 0 \end{matrix}\right.=\begin{Bmatrix} \cdots ,0,0,\overset{l}{1},0,0,\cdots \end{Bmatrix}

②单位阶跃序列

         u[k]=\left\{\begin{matrix} 1, &k\geq 0 \\ 0, & k< 0 \end{matrix}\right.=\begin{Bmatrix} \cdots ,0,0,\overset{l}{1},1,1,\cdots \end{Bmatrix}

③两者关系

         \delta [k]=u[k]-u[k-1]

         u[k]=\sum_{n=-\infty }^{k}\delta [n] 或 u[k]=\sum_{j=0}^{\infty }\delta [k-j]

④实指数序列

         f[k]=Ar^k,k\in Z

⑤虚指数序列和正弦序列

         f[k]=e^{j\Omega _0k}=cos(\Omega _0k)+jsin(\Omega _0k),k\in Z

         当\frac{\Omega _0}{2\pi }=\frac{m}{N}\frac{m}{N}为有理数且不可约时,信号e^{j\Omega _0k}为周期信号,其周期为N

3.信号的运算

注:牢记信号的运算是对自变量t或k进行运算

(1)连续信号的运算

         f(t)\overset{t\rightarrow -t}{\rightarrow}f(-t)\overset{t\rightarrow 2t}{\rightarrow}f[-(2t)]\overset{t\rightarrow t-1}{\rightarrow}f[-2(t-1)],翻转、压缩两倍、右移一位

         f(t)\overset{t\rightarrow t+2}{\rightarrow}f(t+2)\overset{t\rightarrow 2t}{\rightarrow}f(2t+2)\overset{t\rightarrow -t}{\rightarrow}f[2(-t)+2],左移两位、压缩两倍、翻转

         注:在进行尺度变换时,(如果有)冲激信号的强度也会发生变化,因为冲激信号的的面积始终为1,所以尺度变换会影响强度。单位脉冲信号则是正常变换。

(2)离散信号的运算

         一阶后向差分:\bigtriangledown f[k]=f[k]-f[k-1]

         一阶前向差分:\bigtriangleup f[k]=f[k+1]-f[k]

4、确定信号的时域表示

(1)连续信号表示为冲激信号的线性组合

         f(t)=\lim_{\Delta \rightarrow 0}\sum_{k=-\infty }^{\infty }f(k\Delta )\delta (t-k\Delta )\Delta =\int_{-\infty }^{\infty }f(\tau )\delta (t-\tau )d\tau

(2)离散序列分解为脉冲序列的线性组合

         f[k]=\sum_{n=-\infty }^{\infty }f[n]\delta [k-n]

二、系统的概念及分类

1、系统定义(略)

2、系统分类

(1)线性系统与非线性系统

①线性系统

         线性系统是指满足齐次性和可加性的系统。

         齐次性:af_1\rightarrow ay_1;可加性:\left\{\begin{matrix} f_1\rightarrow y_1\\f_2\rightarrow y_2 \end{matrix}\right.\Rightarrow f_1+f_2\rightarrow y_1+y_2

         线性:af_1+bf_2\rightarrow ay_1+by_2

         即T[af_1(\cdot )+bf_2(\cdot )]=aT[f_1(\cdot )]+bT[f_2(\cdot )]

②动态线性系统

         动态线性系统的响应不仅与激励\begin{Bmatrix} f(\cdot ) \end{Bmatrix}有关,还和过去的状态\begin{Bmatrix} x(0) \end{Bmatrix}有关。

         零状态响应:y_{f}(\cdot )=T[\begin{Bmatrix} f(\cdot ) \end{Bmatrix},\begin{Bmatrix} 0 \end{Bmatrix}]

         零输入响应:y_{x}(\cdot )=T[\begin{Bmatrix} 0\end{Bmatrix},\begin{Bmatrix} x(0) \end{Bmatrix}]

         完全响应:y(\cdot )=T[\begin{Bmatrix} f(\cdot ) \end{Bmatrix},\begin{Bmatrix} x(0) \end{Bmatrix}]

         当动态系统满足以下三个条件时,该系统为线性系统:

         a.可分解性:y(\cdot )=y_{x}(\cdot )+y_{f}(\cdot)

         令x(0)=0,求y_{f};令f(\cdot)=0,求y_{x}

         b.零状态线性:

         T[\begin{Bmatrix} af_1(\cdot )+bf_2(\cdot ) \end{Bmatrix},\begin{Bmatrix} 0 \end{Bmatrix}]=aT[\begin{Bmatrix} f_1(\cdot ) \end{Bmatrix},\begin{Bmatrix} 0 \end{Bmatrix}]+bT[\begin{Bmatrix} f_2(\cdot ) \end{Bmatrix},\begin{Bmatrix} 0 \end{Bmatrix}]

         c.零输入线性:

         T[\begin{Bmatrix} 0 \end{Bmatrix},\begin{Bmatrix} ax_1(0)+bx_2(0) \end{Bmatrix}]=aT[\begin{Bmatrix} 0 \end{Bmatrix},\begin{Bmatrix} x_1(0) \end{Bmatrix}]+bT[\begin{Bmatrix} 0 \end{Bmatrix},\begin{Bmatrix} x_2(0) \end{Bmatrix}]

(2)时变系统与时不变系统

①定义

         时不变系统:系统输入延迟多少时间,其零状态响应也相应延迟多少时间。

         时不变性:f(t-t_d)\rightarrow y_{f}(t-t_d)

         T[\begin{Bmatrix} f(t-t_d) \end{Bmatrix},\begin{Bmatrix} 0 \end{Bmatrix}]=y_{f}(t-t_d)

②时不变的直观判断

         如果f(\cdot )前出现变系数,或有反转、展缩变换,则该系统为时变系统。

(3)因果系统与非因果系统

①定义

         因果系统指的是零状态响应不会出现在激励之前的系统。

         例如下列系统为因果系统,零状态响应和激励同时出现或出现在激励之后:

         y_{f}(t)=3f(t-1)\xrightarrow[]{t=1}y_{f}(1)=3f(0)

         y_{f}(t)=\int_{-\infty }^{t}f(x)\xrightarrow[]{t=1}y_{f}(1)=\int_{-\infty }^{1}f(x)dx

         以下系统为非因果系统,零状态响应出现在激励之前:

         y_{f}(t)=2f(t+1)\xrightarrow[]{t=1}y_{f}(1)=2f(2)

         y_{f}(t)=f(2t)\xrightarrow[]{t=1}y_{f}(1)=f(2)

3、系统的时域分析

既具有线性特性又具有时不变特性的系统成为线下时不变系统,简称LTI系统。

(1)连续时间LTI系统的响应

①经典时域分析法

         y^{(n)}(t)+a_{n-1}y^{(n-1)}(t)+\cdots +a_{y}'(t)+a_0y(t)=b_mf^{(m)}(t)+b_{m-1}f^{(m-1)}(t)+\cdots +b_1{f}'(t)+b_0f(t)

         y(t)=y_h(t)+y_p(t) [全解=齐次解(固有响应)+特解(强迫响应)]

齐次解是齐次微分方程的解

         y^{(n)}(t)+a_{n-1}y^{(n-1)}(t)+\cdots +a_{y}'(t)+a_0y(t)=0

特征方程为

         s^n+a_{n-1}s^{n-1}+\cdots +a_1s+a_0s^0=0

a.当特征根是不等实根s_1,s_1,\cdots ,s_n

         y_h(t)=K_1e^{s_1t}+K_2e^{s_2t}+\cdots +K_ne^{s_nt}

b.当特征根是相等实根s_1=s_1=\cdots =s_n

         y_h(t)=K_1t^0e^{s_1t}+K_2te^{s_2t}+\cdots +K_nt^{n-1}e^{s_nt}

c.当特征根是成对共轭复根s_1=\sigma _1\pm j\omega _1,s_2=\sigma _2\pm j\omega _2,\cdots ,s_l=\sigma _l\pm j\omega _l,(l=\frac{n}{2}) 时,

         y_h(t)=e^{\sigma _1t}(K_1cos\omega _1t+K_2sin\omega _1t)+\cdots +e^{\sigma _lt}(K_{n-1}cos\omega _lt+K_nsin\omega _lt)

常用激励信号对应的特解

输入信号f(t)特解y_p(t)
KA
KtA+Bt
Ke^{-at}(特征根s\neq -aAe^{-at}
Ke^{-at}(特征根s=-aAte^{-at}
Ksin\omega _0t/Kcos\omega _0tAsin\omega _0t+Bcos\omega _0t
Ke^{-at}cos\omega _0t/Ke^{-at}sin\omega _0tAe^{-at}sin\omega _0t+Be^{-at}cos\omega _0t

         得到齐次解和特解的表达式后,将两者相加得到全解表达式,利用已知的n个初始条件y(0^+),{y}(0^+),{y}''(0^+),\cdots ,y^{(n-1)}(0^+),即可求得齐次解表达式中的待定系数,从而得到微分方程的全解。

②连续时间LTI系统的零输入响应y_x(t)

         系统的初始状态y(0^-),{y}(0^-),{y}''(0^-),\cdots ,y^{(n-1)}(0^-)是指系统在没有外部激励时系统的固有状态,经典法中的y(0^+),{y}(0^+),{y}''(0^+),\cdots ,y^{(n-1)}(0^+)是指t=0时刻加入激励后系统的初始条件,注意区分。

         解法和经典法中求齐次解的方法一致,注意带入y(0^-),{y}(0^-),{y}''(0^-),\cdots ,y^{(n-1)}(0^-)求解齐次解表达式中的待定系数。

③连续时间LTI系统的零状态响应y_f(t)

         

  • 7
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值