系列文章目录
【学习笔记】奥本海姆第二版《信号与系统》第二章:线性时不变系统
【学习笔记】奥本海姆第二版《信号与系统》第三章:周期信号的傅里叶级数表示
【学习笔记】奥本海姆第二版《信号与系统》第四章:连续时间傅里叶变换
【学习笔记】奥本海姆第二版《信号与系统》第五章:离散时间傅里叶变换
文章目录
1、消息和信号
消息:人们常常把来自外界的各种报道(语言,文字,图像,数据等等)称为消息也叫信息。
信号:消息的载体,一般表示为物理量(例如:声信号,电信号,光信号等等)
信号可以描述极广范围的物理现象,在数学上信号可以表示一个或者多个变量的函数。(通常书中讨论的信号都是以时间为自变量的函数)
2、连续时间信号和离散时间信号
连续时间信号: 在连续时间范围内除有限个间断点外都有定义的信号(PS:这里连续是指定义域t,信号的值域可以是连续的也可以不是)
离散时间信号: 仅在离散时刻点有定义的信号称为离散信号,离散时刻点以外,信号无定义(PS:离散是指自变量只取离散的数值,离散时刻点可以是等间隔也可以不等间隔)
为了区别这两类信号,通常用t表示连续时间变量,用[ ]表示离散时间变量。
连续时间信号用()把自变量放里面,例如x(t)
离散时间信号用[ ]把自变量放里面,例如x[n],也叫离散时间序列
3、 信号能量和功率
根据功率公式 P=V*R=I²R=V²/R
若v(t)和i(t)表示阻值R的某一电阻上的电压和电流,则其瞬时功率就是:
在时间t1≤ t ≤ t2内消耗的能量就是:
则其平均功率为:
信号能量:信号x(t)在无穷区间内(如-∞ < t < +∞或 - ∞ < n < +∞)加在单位电阻上的能量:
在离散时间情况下就是:
则信号的平均功率为:
在离散时间情况下的信号平均功率为:
如果信号能量为非零有限值,称为能量有限信号,此时信号的平均功率=0
如果信号的平均功率为非零有限值,就称为功率有限信号,此时信号的能量=∞
4、自变量变换
1、时移
时移是指两个信号形状上完全一致,但是位置上互相有一个位移。
连续时间信号时移动如下:
这里x(t-t0)代表一个延时,若t0为正数则代表信号延时t0个单位。
若t0为负数则代表信号超前t0个单位。
离散时间信号时移动如下:
2、时间反转
时间反转是指两个信号沿着X轴对称的信号
连续时间信号的反转如下:
离散时间信号的反转如下:
3、时间尺度变换
一个已知的信号 x(t)通过自变量变换以求得一个形式如(αt +β)的信号,其中α 和β都是给定的数。这样一种自变量变换所得到的信号除了有一个线性的扩展(若a<1)或压缩(若la>1),时间上的反转(若a<0)及移位(若B0)外仍旧保持x(t)的形状称为时间尺度变换
5、 周期信号
一个周期连续时间信号x(t)具有这样的性质,即存在一个正值T,对所有的t来说都有x(t) = x(t + T)
如果x(t)是周期的,周期为T。那么对所有的t和任意整数m 来说,就有 x(t)=x(t+mT)由此x(t)对于周期2T,3T,47,···等都是周期的。使式成立的最小正值T称为(t)的基波周期T。除了x(t)为一个常数外基本周期的定义都成立在x(t)为一个常数的情况下,基波周期无定义,因为这时对任意 了来说x(t)都是周期的(所以不存在最小的正值T)。一个信号x(t)不是周期的就称为非周期信号。
6、偶信号与奇信号
如果一个信号x(t)或x[n]以原点为轴反转后不变,就称其为偶信号。
在连续时间情况下有:x(-t) = x(t)
在离散时间情况下有:x[-n] = x[n]
如果有:
在连续时间情况下有:x(-t) = -x(t)
在离散时间情况下有:x[-n] = -x[n] 则为奇信号。
一个奇信号在t=0或者n=0时必须为0
任何信号都能分解成两个信号之和,其中之一是偶信号,另一个为奇信号
Ev{x(t)}和Od{x(t)}分别称为x(t)的偶部和奇部,则x(t)就是两则之和。
7、指数信号与正弦信号
7.1、实指数信号
连续时间复指数信号具有如下形式:
若 C和α都是实数,这时的x(t)称为实指数信号。若α是正实数,那么x(t)随t的增加而呈指数增长,若α是负实数,则x(t)随t的增加而呈指数衰减。
7.2、周期复指数和正弦信号
复指数信号是将α限制为纯虚数,特别是如下信号:
该信号是周期信号,若ω = 0,则x(t) = 1这时对任何T值x(t)都是周期的;若ω ≠ 0那么使式成立的最小
正T值,即基波周期 T0应为:
与周期复指数信号密切相关的一种信号是正弦信号:
根据欧拉公式:
则正弦信号也能用相同基波周期的复指数信号来表示:
注意,式中的两个指数信号都有复数振幅,所以正弦信号还可以用复指数信号表示为:
从基波周期式子T0可以看到,连续时间正弦信号或一个周期复指数信号,其基波周期 T是与|ω0|成反比的,也称ω为基波频率。
7.3、离散时间复指数信号和正弦信号
7.3.1
与连续时间情况一样,一种重要的离散时间信号是复指数信号或序列,定义为:
其中 C和α一般均为复数。若令 α =e^β,则有另一种表示形式为:
7.3.2实指数信号
如果 C 和α 都是实数,若lαl>1则信号随n呈指数增长;若lαl<1,则信号随n呈指数衰减。另外若α是正值则 Cα^n的所有值都具有同一符号;而若α 为负值,则x[n]的符号交替变化。同时要注意,若α =1,x[n]就是一个常数;而若α = -1,x[n]的值就在+C和-C之间交替变化。
7.3.3正弦信号
如果上式的β局限与纯虚数,及|α| = 1,就可以得到一个重要的复指数序列:
与连续时间情况一样,这个信号是与正弦信号密切相关:
8、单位冲激和单位阶跃信号
8.1、离散时间单位脉冲和单位阶跃序列
离散时间单位脉冲也称单位样本,定义为:
如图所示:
离散单位阶跃信号定义为:
如图所示:
离散时间单位脉冲和单位阶跃之间存在着密切的关系。离散时间单位脉冲是离散时间单位
阶跃的一次差分,即:
相反,离散时间阶跃是单位样本的求和函数,即:
在上式中将求和变量从m 改变为k=n-m后离散时间单位阶跃也可用单位样本表示成:
单位脉冲序列可以用于一个信号在n=0时的值的采样,因为σ[n]仅在n=0为非零值(等于1),所以有:
8.2、连续时间单位阶跃和单位冲激函数:
与离散时间情况相类似,连续时间单位阶跃函数u(t)定义为:
值得注意的是,单位阶跃在 t=0 这一点是不连续的,如图所示:
连续时间单位冲激函数σ与单位阶跃的关系和离散时间单位脉冲与单位阶跃函数之间的关系相类似,即连续时间单位阶跃是单位冲激的积分函数:
根据上式连续时间单位冲激可看成连续时间单位阶跃的一次微分:
与离散时间单位脉冲函数一样,连续时间冲激函数也具有一个很重要的采样性质:
同理,对出现在任意一点t0的冲激应该有一个类似的表示式为:
9、连续时间和离散时间系统
一个连续时间系统是这样的系统,输人该系统的信号是连续时间信号,系统产生的输出也是连续时间信号。这样的系统可用下图来表示,图中x(t)是输入,而 y(t)是输出,所以也常常用下面的符号来表示连续时间系统的输入输出关系:
类似地,一个离散时间系统就是将离散时间输入信号变换为离散时间输出信号,可以用下图 来表示,也可以用下面的符号来代表输入输出关系:
10、基本系统性质
10.1、记忆系统和无记忆系统
如果对自变量的每一个值,一个系统的输出仅仅取决于该时刻的输人,这个系统就称为无记忆系统。
10.2、因果性
如果一个系统在任何时刻的输出只取决于现在的输入及过去的输入,该系统就称为因果)系统。这样的系统往往也称为不可预测的系统,因为系统的输出无法预测未来的输入。
10.3、时不变
从概念上讲,若系统的特性和行为不随时间而变,该系统就是时不变的。
10.4、 线性:
线性系统(连续时间或离散时间)具有的一个很重要的性质就是叠加性质,即:如果某一个输入是由几个信号的加权和组成的,那么输出也就是系统对这组信号中每一个的响应的加权和。更准确地说,令y(t)是一个连续时间系统对输人(t)的应而y(t)是对应于输(t)的输出,那么一个线性系统就应该有:
上面的第–个性质称为可加性;而第二个则称为齐次性。