从0开始机器学习--0.序

系列文章目录


如果你是......

如果你正想向人工智能领域迈出坚实的第一步;如果你正学着机器学习的相关知识却又觉得各种资源过于杂乱;如果你正烦对课堂上所学的理论知识模模糊糊一知半解;如果你正愁迟迟敲不下第一行代码难以将理论用于实践;如果你正找不到Github等开源仓库中适合入门的简单的项目......


写在前面

本人是目前就读与上海某211人工智能专业的学生,不知道大家有没有发现学校里的课程内容大多是以计算机基础知识(即408科目)和数学理论知识(如信息论、运筹学)为主。以工科生的角度,我个人认为这些底层概念固然重要(如信息论中学到的熵,是决策树这一分类模型算法的重要依据,在面试时也会有面试官对数学公式进行考察);但在实际运用中,现成的机器学习库会帮助我们完成大部分计算(如几种降维算法如PCA,它本质上是基于线性代数的维归约技术,但是我们只需要得出代码调用对应库函数即可,一行代码就能完成所有内容),甚至现今随着GPT等大模型的不断发展,我们甚至可以只得出思路,知道大致的输入输出的形式和意义后完全可以将代码大体上交由这些大模型去实现。但基于大学课堂的教学内容和性质,许多同学都空掌握了一身概念层面上对知识的理解,或者压根无法理解“我学的是计算机,为什么要学这些晦涩难懂的公式?”


本系列文章就随着我自己对课内和课外结合学习的历程,向大家以理论与代码与可见的结果--三合一的方式 展示:

  • 1.python基础;
  • 2.ai模型概念+基础;
  • 3.数据预处理;
  • 4.机器学习模型--1.聚类;2.降维;3.回归(预测);4.分类;
  • 5.正则化技术;
  • 6.神经网络模型--1.概念+基础;2.几种常见的神经网络模型;
  • 7.对回归、分类模型的评价方式;
  • 8.简单强化学习概念;
  • 9.几种常见的启发式算法及应用场景;
  • 10.机器学习延申应用-数据分析相关内容--1.A/B Test;2.辛普森悖论;3.蒙特卡洛模拟;
  • 以及其他的与人工智能相关的学习经历,如数据挖掘、计算机视觉-OCR光学字符识别等。

因为本人也还有学业在身,以上的前10点内容虽在本地都有大致整理好的笔记,但po到csdn上也需要课余时间整理,感兴趣的同学也可以先码住☆⌒(*^-゜)v!!另外,这些内容涉及到我自己的一些小理解和尝试,若在后续的分享中有错误❌也欢迎大家指正和一起讨论。 

* 本系列文章中聚类和降维部分主要的参考资料都来自微信公众号--派森小木屋;python基础和神经网络及强化学习部分主要的参考资料来自b站--莫烦python;数据分析相关部分的参考资料来自xhs上其他博主分享的面经。

机器学习中的聚类算法是一种无监督学习方法,用于将数据集中的样本分成不同的组,使得同一组内的样本具有相似的特征,而不同组之间的样本具有较大的差异。 聚类算法的目标是通过分析数据的相似性和差异性,将数据集划分成不同的类别或簇,以便更好地理解和分析数据。聚类算法通常包括以下几个步骤: 1. 选择距离度量方法:聚类算法通常基于样本之间的距离或相似性来进行聚类。常见的距离度量方法有欧氏距离、曼哈顿距离等。 2. 选择聚类算法:根据数据的性质和需求选择适当的聚类算法。常见的聚类算法有K均值算法、层次聚类算法等。 3. 初始化聚类中心:对于K均值算法等需要选择聚类中心的算法,需要初始化聚类中心。常见的初始化方法有随机选择、采样选择等。 4. 迭代聚类:根据数据样本的距离或相似性进行迭代计算,直到满足停止准则或达到最大迭代次数为止。迭代的过程中,不断更新聚类中心以获得更合理的聚类结果。 5. 聚类评估和结果解释:对于聚类结果,需要进行评估和解释。常见的评估指标有聚类精度、互信息等。 机器学习聚类算法的应用非常广泛,例如在数据挖掘、图像处理、社交网络分析等领域中都有大量的应用。聚类算法可以帮助我们发现数据的隐藏结构、分析数据的特征以及归纳数据集的规律,从而实现更好的数据管理和分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值