一、 ICG
ICG(Impartial Combinatorial Games),即公平的组合游戏,满足下列条件:
两名选手。
两名选手轮流行动,每一次行动可以在有限合法操作集合中选择一个。
游戏的任何一种可能的局面(position),合法操作集合只取决于这个局面本身,与轮到哪名选手无关;局面的改变称为“移动”(move)。
若轮到某位选手时,该选手的合法操作集合为空,则这名选手判负。
二、有向图游戏
任何一个公平组合游戏都能转换成有向图游戏,一个状态表示为一个结点。
三、 Nim游戏
Nim游戏是ICG的一种,通常的Nim游戏的定义是这样的:有若干堆石子,每堆石子的数量都是有限的,合法的移动是“选择一堆石子并拿走若干颗(不能不拿)”,如果轮到某个人时所有的石子堆都已经被拿空了,则判负(因为他此刻没有任何合法的移动)。
题目:
/*
对于案例: 2,3
先手先从3里面拿一个,然后和对手做同样的动作,先手必胜。
异或运算
1.先手必胜状态:a1^a2^...^an != 0;
理解:不为0,先手取成0,后手必败
2.先手必败状态:a1^a2^...^an = 0;
*/
#include <iostream>
using namespace std;
int main()
{
int n, x, ans = 0;
cin >> n;
for(int i = 0; i < n; i++)
{
cin >> x;
ans ^= x;
}
if(ans == 0) cout << "No" << endl;
else cout << "Yes" << endl;
return 0;
}