刷算法题:
第一遍:1.看5分钟,没思路看题解
2.通过题解改进自己的解法,并且要写每行的注释以及自己的思路。
3.思考自己做到了题解的哪一步,下次怎么才能做对(总结方法)
4.整理到自己的自媒体平台。
5.再刷重复的类似的题目,根据时间和任务安排刷哪几个板块
6.用c++语言 都刷过一遍了 就刷中等
一.题目
给你一个大小为 n x n 的整数矩阵 grid 。生成一个大小为 (n - 2) x (n - 2) 的整数矩阵 maxLocal ,并满足:
maxLocal[i][j] 等于 grid 中以 i + 1 行和 j + 1 列为中心的 3 x 3 矩阵中的 最大值 。
换句话说,我们希望找出 grid 中每个 3 x 3 矩阵中的最大值。返回生成的矩阵。
相当于就是做一个最大池化。
示例 1:
输入:grid = [[9,9,8,1],[5,6,2,6],[8,2,6,4],[6,2,2,2]]
输出:[[9,9],[8,6]]
解释:原矩阵和生成的矩阵如上图所示。
注意,生成的矩阵中,每个值都对应 grid 中一个相接的 3 x 3 矩阵的最大值。
示例2:
输入:grid = [[1,1,1,1,1],[1,1,1,1,1],[1,1,2,1,1],[1,1,1,1,1],[1,1,1,1,1]]
输出:[[2,2,2],[2,2,2],[2,2,2]]
解释:注意,2 包含在 grid 中每个 3 x 3 的矩阵中。
提示:
n == grid.length == grid[i].length
3 <= n <= 100
1 <= grid[i][j] <= 100
二、反思
1.自己的解法
class Solution {
public:
vector<vector<int>> largestLocal(vector<vector<int>>& grid) {
int n=grid.size;
vector<vector<int>> maxLocal(n-2);
for(int i=1;i<n-1;i++){
for(int j=1;j<n-1;j++){
for(int k=0;;){
}
maxLocal[i][j]=//不知道怎么找最大,很难受。
}
}
return maxLocal;
}
};
2.题目的解法
class Solution {
public:
vector<vector<int>> largestLocal(vector<vector<int>>& grid) {
int n = grid.size();
vector<vector<int>> res(n - 2, vector<int>(n - 2));
//第二个数字是赋值0的意思,n-2是行,之前定义二维数组是不知道行和列的
for (int i = 0; i < n - 2; i++) {
for (int j = 0; j < n - 2; j++) {
for (int x = i; x < i + 3; x++) {//定义一个x,y在(i,j)位置有一个3*3的框
for (int y = j; y < j + 3; y++) {
res[i][j] = max(res[i][j], grid[x][y]);//选出最大值
}
}
}
}
return res;
}
};
3.思路的异同
三.下次怎么才能做对
思路和第二个循环类似,但是在利用vector构造二维数组还是差了一点,还是不是很清楚为啥这么构建可以,试了一下在构建二维数组的时候,都写上行数是不会出错的,而且速度和内存都没有区别,以后就都写上吧。
我就猜到会有一个比较最大值的函数max[1.2],还是慢慢积累吧。
这次做这个最大池化的还有一招,就是通过新定义的(x,y)来‘留住’值,然后再在‘框’里比较。