2373. 矩阵中的局部最大值(最大池化)

刷算法题:

第一遍:1.看5分钟,没思路看题解

2.通过题解改进自己的解法,并且要写每行的注释以及自己的思路。

3.思考自己做到了题解的哪一步,下次怎么才能做对(总结方法)

4.整理到自己的自媒体平台。

5.再刷重复的类似的题目,根据时间和任务安排刷哪几个板块

6.用c++语言 都刷过一遍了 就刷中等

一.题目

给你一个大小为 n x n 的整数矩阵 grid 。生成一个大小为 (n - 2) x (n - 2) 的整数矩阵  maxLocal ,并满足:

maxLocal[i][j] 等于 grid 中以 i + 1 行和 j + 1 列为中心的 3 x 3 矩阵中的 最大值 。
换句话说,我们希望找出 grid 中每个 3 x 3 矩阵中的最大值。返回生成的矩阵。

相当于就是做一个最大池化。

示例 1:

输入:grid = [[9,9,8,1],[5,6,2,6],[8,2,6,4],[6,2,2,2]]
输出:[[9,9],[8,6]]
解释:原矩阵和生成的矩阵如上图所示。
注意,生成的矩阵中,每个值都对应 grid 中一个相接的 3 x 3 矩阵的最大值。

示例2:

输入:grid = [[1,1,1,1,1],[1,1,1,1,1],[1,1,2,1,1],[1,1,1,1,1],[1,1,1,1,1]]
输出:[[2,2,2],[2,2,2],[2,2,2]]
解释:注意,2 包含在 grid 中每个 3 x 3 的矩阵中。

提示:

n == grid.length == grid[i].length
3 <= n <= 100
1 <= grid[i][j] <= 100

 

二、反思

1.自己的解法

class Solution {
public:
    vector<vector<int>> largestLocal(vector<vector<int>>& grid) {
        int n=grid.size;
        vector<vector<int>> maxLocal(n-2);
        for(int i=1;i<n-1;i++){           
            for(int j=1;j<n-1;j++){
                for(int k=0;;){
                    
                }
                maxLocal[i][j]=//不知道怎么找最大,很难受。

            }
        }
        return maxLocal;

    }
};

2.题目的解法 

class Solution {
public:
    vector<vector<int>> largestLocal(vector<vector<int>>& grid) {
        int n = grid.size();
        vector<vector<int>> res(n - 2, vector<int>(n - 2));
        //第二个数字是赋值0的意思,n-2是行,之前定义二维数组是不知道行和列的
        for (int i = 0; i < n - 2; i++) {
            for (int j = 0; j < n - 2; j++) {
                for (int x = i; x < i + 3; x++) {//定义一个x,y在(i,j)位置有一个3*3的框
                    for (int y = j; y < j + 3; y++) {
                        res[i][j] = max(res[i][j], grid[x][y]);//选出最大值
                    }
                }
            }
        }
        return res;
    }
};

 3.思路的异同

三.下次怎么才能做对 

 思路和第二个循环类似,但是在利用vector构造二维数组还是差了一点,还是不是很清楚为啥这么构建可以,试了一下在构建二维数组的时候,都写上行数是不会出错的,而且速度和内存都没有区别,以后就都写上吧。

我就猜到会有一个比较最大值的函数max[1.2],还是慢慢积累吧。

这次做这个最大池化的还有一招,就是通过新定义的(x,y)来‘留住’值,然后再在‘框’里比较。

### 使用均值池化寻找局部最大值 在卷积神经网络,通常采用的最大池化操作用于提取特征图局部最大响应。然而,在某些情况下,使用均值池化也可以帮助识别局部最大值。 #### 均值池化的定义 均值池化通过计算输入矩阵滑动窗口内元素的平均值来进行下采样处理。尽管其主要目的是减少空间维度并保留重要信息,但在特定场景下也能辅助定位局部极值点[^1]。 对于实现基于均值池化的局部最大值检测方法: ```python import numpy as np def mean_pool_local_max(input_matrix, kernel_size=2, stride=1): """ 实现了一个简单的函数来执行均值池化,并标记可能存在的局部极大值位置 参数: input_matrix (numpy.ndarray): 输入二维数组/图像数据 kernel_size (int): 池化核大小,默认为2x2 stride (int): 步幅,默认每次移动一个像素 返回: tuple: 包含两个元素的结果列表, 第一个是经过均值池化后的输出; 第二个是在原图标记出来的潜在局部最大值坐标集合。 """ h_out = ((input_matrix.shape[0]-kernel_size)//stride)+1 w_out = ((input_matrix.shape[1]-kernel_size)//stride)+1 pooled_output = np.zeros((h_out,w_out)) max_positions = [] for i in range(0,h_out*stride,stride): for j in range(0,w_out*stride,stride): window = input_matrix[i:i+kernel_size,j:j+kernel_size] avg_val = np.mean(window) center_pos = (i+(kernel_size//2),j+(kernel_size//2)) if not any([np.array_equal(center_pos,x) for x in max_positions]): surrounding_vals = [] # 获取周围8邻域内的值 for di,dj in [(-1, 0), (1, 0), (-1, 1),(0, 1),(1, 1)]: ni,nj=center_pos[0]+di,center_pos[1]+dj if 0<=ni<input_matrix.shape[0] and \ 0<=nj<input_matrix.shape[1]: surrounding_vals.append(input_matrix[ni][nj]) if all(avg_val >= val for val in surrounding_vals): max_positions.append(center_pos) pooled_output[(i//stride)][(j//stride)] = avg_val return pooled_output,max_positions # 测试案例 test_input = np.random.rand(7,7)*100 print("原始输入:\n",test_input,"\n") pooled_result,pos_list = mean_pool_local_max(test_input,kernel_size=3,stride=1) print("均值池化结果:\n",pooled_result,"\n") print(f"找到{len(pos_list)}处局部最大值的位置:",pos_list) ``` 此代码片段展示了如何利用均值池化技术在一个给定的小区域内评估心点是否可能是该区域内的局部最大值。需要注意的是这种方法并不总是能找到全局意义上的绝对最大值;它更适合用来发现相对较大的数值聚集区。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值