2373. 矩阵中的局部最大值(最大池化)

刷算法题:

第一遍:1.看5分钟,没思路看题解

2.通过题解改进自己的解法,并且要写每行的注释以及自己的思路。

3.思考自己做到了题解的哪一步,下次怎么才能做对(总结方法)

4.整理到自己的自媒体平台。

5.再刷重复的类似的题目,根据时间和任务安排刷哪几个板块

6.用c++语言 都刷过一遍了 就刷中等

一.题目

给你一个大小为 n x n 的整数矩阵 grid 。生成一个大小为 (n - 2) x (n - 2) 的整数矩阵  maxLocal ,并满足:

maxLocal[i][j] 等于 grid 中以 i + 1 行和 j + 1 列为中心的 3 x 3 矩阵中的 最大值 。
换句话说,我们希望找出 grid 中每个 3 x 3 矩阵中的最大值。返回生成的矩阵。

相当于就是做一个最大池化。

示例 1:

输入:grid = [[9,9,8,1],[5,6,2,6],[8,2,6,4],[6,2,2,2]]
输出:[[9,9],[8,6]]
解释:原矩阵和生成的矩阵如上图所示。
注意,生成的矩阵中,每个值都对应 grid 中一个相接的 3 x 3 矩阵的最大值。

示例2:

输入:grid = [[1,1,1,1,1],[1,1,1,1,1],[1,1,2,1,1],[1,1,1,1,1],[1,1,1,1,1]]
输出:[[2,2,2],[2,2,2],[2,2,2]]
解释:注意,2 包含在 grid 中每个 3 x 3 的矩阵中。

提示:

n == grid.length == grid[i].length
3 <= n <= 100
1 <= grid[i][j] <= 100

 

二、反思

1.自己的解法

class Solution {
public:
    vector<vector<int>> largestLocal(vector<vector<int>>& grid) {
        int n=grid.size;
        vector<vector<int>> maxLocal(n-2);
        for(int i=1;i<n-1;i++){           
            for(int j=1;j<n-1;j++){
                for(int k=0;;){
                    
                }
                maxLocal[i][j]=//不知道怎么找最大,很难受。

            }
        }
        return maxLocal;

    }
};

2.题目的解法 

class Solution {
public:
    vector<vector<int>> largestLocal(vector<vector<int>>& grid) {
        int n = grid.size();
        vector<vector<int>> res(n - 2, vector<int>(n - 2));
        //第二个数字是赋值0的意思,n-2是行,之前定义二维数组是不知道行和列的
        for (int i = 0; i < n - 2; i++) {
            for (int j = 0; j < n - 2; j++) {
                for (int x = i; x < i + 3; x++) {//定义一个x,y在(i,j)位置有一个3*3的框
                    for (int y = j; y < j + 3; y++) {
                        res[i][j] = max(res[i][j], grid[x][y]);//选出最大值
                    }
                }
            }
        }
        return res;
    }
};

 3.思路的异同

三.下次怎么才能做对 

 思路和第二个循环类似,但是在利用vector构造二维数组还是差了一点,还是不是很清楚为啥这么构建可以,试了一下在构建二维数组的时候,都写上行数是不会出错的,而且速度和内存都没有区别,以后就都写上吧。

我就猜到会有一个比较最大值的函数max[1.2],还是慢慢积累吧。

这次做这个最大池化的还有一招,就是通过新定义的(x,y)来‘留住’值,然后再在‘框’里比较。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值