刷算法题:
第一遍:1.看5分钟,没思路看题解
2.通过题解改进自己的解法,并且要写每行的注释以及自己的思路。
3.思考自己做到了题解的哪一步,下次怎么才能做对(总结方法)
4.整理到自己的自媒体平台。
5.再刷重复的类似的题目,根据时间和任务安排刷哪几个板块
6.用c++语言 都刷过一遍了 就刷中等
一.题目
给你两个单词 word1
和 word2
, 请返回将 word1
转换成 word2
所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例 1:
输入:word1 = "horse", word2 = "ros" 输出:3 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution" 输出:5 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')
提示:
0 <= word1.length, word2.length <= 500
word1
和word2
由小写英文字母组成
二、反思
1.自己的解法
class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.length();
int n = word2.length();
// 创建一个 (m+1) x (n+1) 的二维数组
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
// 初始化第一行和第一列
for(int i = 0; i <= m; ++i){
dp[i][0] = i; // 将 word1 的前 i 个字符转换为 "",需要 i 次删除操作
}
for(int j = 0; j <= n; ++j){
dp[0][j] = j; // 将 "" 转换为 word2 的前 j 个字符,需要 j 次插入操作
}
// 填充 dp 数组
for(int i = 1; i <= m; ++i){
for(int j = 1; j <= n; ++j){
if(word1[i - 1] == word2[j - 1]){
// 当前字符相同,不需要额外操作
dp[i][j] = dp[i - 1][j - 1];
}
else{
// 当前字符不同,取插入、删除、替换操作中的最小值加 1
dp[i][j] = min({ dp[i - 1][j], // 删除
dp[i][j - 1], // 插入
dp[i - 1][j - 1] // 替换
}) + 1;
}
}
}
// 返回将 word1 转换为 word2 的最小操作次数
return dp[m][n];
}
};
2.题目的解法
2
3.思路的异同
没想出来,动态规划的思想太厉害了,从0到n构建,从中算出编辑距离。
三.进步的地方
掌握了面试中一个常考的题目吧