人工智能数学基础-模型评价

目录

1.人工智能

2.机器学习

3.模型评价指标

(1)Accuracy(准确率,最常用)

(2)Recall(查全率,召回率)

(3)Precision(查准率/精确率)

(4)F1 Score(Balanced Score)

4.模型评价方法

(1)混淆矩阵

(2)P_R曲线

(3)ROC曲线和AUC

(4)KS曲线

5.评价指标计算


1.人工智能

科学百科:
人工智能 (Artificial Intelligence,AI) 研究 开发 用于 模拟 延伸 和扩展人的 智能 的理论、方法、技术及应用系统的一门新的技术科学。
                                        
人工智能是计算机科学的一个分支 ,它企图了解智能的实质,并生产出一种新的能以 人类智能 相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和 专家系统 等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类 智慧 的“容器”。人工智能可以对人的意识、思维的信息过程进行模拟。

2.机器学习

科学百科:
机器学习 是一门多领域交叉学科,涉及概率论、统计学、 逼近论 凸分析 算法复杂度 理论等多门学科。专门研究计算机怎样模拟或实现人类的 学习行为 ,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
机器学习是人工智能及模式识别领域的共同研究热点。
传统机器学习的研究方向主要包括 决策树 随机森林 人工神经网络 贝叶斯学习 等方面的研究。
机器学习: 从数据中学习知识
分类:

3.模型评价指标

                ​​​​​​​        ​​​​​​​        ​​​​​​​      、

TP,TN,FP FN
1位代表检测正确是否正确,第 2 位代表检测结果。
T:True, F: False; P: Positive, 可理解为阳性, N: Negative, 阴性。
TP, TN, FP FN 就是真假和阴阳的排列组合。
TP 就是真阳,检测是阳性,实际上也是阳性;
TN 就是真阴,检测是阴性,实际上也是阴性;
FP 是假阳,检测是阳性,但实际上是阴性;
FN 是假阴,检测是阴性,但实际上是阳性。
TP,TN, 检测试剂给力,检测准确 ,
检测是阳就是阳,是阴就是阴 ;
FP,FN 检测试剂能力弱,检测错误。

      

(1)Accuracy(准确率,最常用)

准确率:预测结果准确的概率,包含了正例也包含了负例。

        ​​​​​​​        ​​​​​​​        ​​​​​​​        

                                                                准确率 = \frac{TP+TN}{TP+TN+FP+FN}

Accuracy 往往不能反映一个模型性能的好坏。
不平衡数据集上,正类样本占总数的 5% ,负类样本占总数的 95% ;有一个模型把所有样本全部判断为负类,该模型准确率95% ,但该模型没有意义。

(2)Recall(查全率,召回率)

召回率:正确预测为正的占全部实际为正的比例。
查出阳性结果的实例占实际全部阳性的比例,即召回的比例。
        ​​​​​​​        ​​​​​​​        ​​​​​​​        
疫情当下,核酸检测模型的目标是将所有感染的人给检测出来,即使会有误诊,但假阳是可以接受的,可再检进一步确定;而假阴则放过了病例,一方面延误治疗,另一方面危害大。

(3)Precision(查准率/精确率)

查准率:所有预测为正例的样本当中,正确的比例。
        ​​​​​​​        ​​​​​​​        
在警察追捕罪犯的模型上,不能像核酸监测那样要求,该模型的目
标是将罪犯准确地识别出来,而不希望有过多的误判。

(4)F1 Score(Balanced Score)

F1-score Recall Precision 的加权平均, F1-score ∈ 0,1 , 值越 , 分类模型越 稳健
Recall Precision 任何一个数值减小, F1-score 都会减小,反之亦然
Precision Recall 加权调和平均,并假设两者一样重要 , F1-score 越高,说明分类模型越稳健。

4.模型评价方法

(1)混淆矩阵

Confusion Matrix 也称误差矩阵,是表示精度评价的一种标准格式,用n n 列的矩阵形式来表示。在人工智能中,混淆矩阵是可视化工具,特别用于 监督学习 ,在 无监督学习 一般叫做匹配矩阵。

(2)P_R曲线

P-R曲线 P 就是查准率 Precision R 就是查全率 Recall 。以 P 作为 纵坐标 R 作为 横坐标 ,可以画出 P-R 曲线。
对于同一个模型,通过调整分类阈值,可以得到不同的 P-R 值,从而对应不同的曲线。
比较两个分类器好坏,显然是查得又准又全的比较好,也就是的 PR 曲线越往坐标(1,1) 的位置靠近越好。
若一个学习器的 P-R 曲线被另一个学习器完全”包住”,则后者的性能优于前者。当存在交叉时,可以计算曲线围住面积来判断。

(3)ROC曲线和AUC

ROC(Receiver Operating Characteristic) 曲线 , 受试者工作特征曲 线。
AUC(Area Under Curve) 被定义为 ROC 曲线下的面积。
        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        
        ​​​​​​​        
正例率, True Positive Rate TPR = TP/ (TP+FN)=Recall
正例率, False Postive Rate FPR = FP/(FP+TN)
ROC 曲线并不能清晰的说明哪个分类器的效果更好。 AUC 作为数值可以直观的评价分类器的好坏,值越大越优。
显然 AUC 不会大于 1 ;又由于 AUC ≥ 0.5( 二分类随机猜测,如抛硬币时 =0.5) ; 所以0.5≤AUC ≤1,因此 ROC 曲线一般都处于y=x这条直线的上方

(4)KS曲线

KS(Kolmogorov-Smirnov) 值, KS=max(TPR-FPR) ,即为 TPR FPR 的差的最大值
实例通过模型进行分类, 分类阈值不同,对应纵轴指标不同
KS=max(TPR-FPR) KS 值用作评估模型区分能力的指标, KS 值越 ,模型的区分能力越

5.评价指标计算

上级给甲乙二人分配任务:从 100 人中挑出卧底。
甲锁定 18 人,其中有 12 人是卧底。 乙锁定10 人,其中有 8 人是卧底。
假设卧底的真实人数是 20 ,请问甲乙二人的 准确率 召回率 精确率 分别是多少?
现在请大家拿出纸和笔来计算一下,看看大家能否掌握了这个计算公式
        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小梁不秃捏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值