切片和索引

numpy学习专题

六、切片和索引

切片和索引

ndarray对象的内容可以通过索引或切片来访问或修改,与python中list的切片操作一样

ndarray数组可以基于0-n的下标进行索引,切片对象可以通过内置的slice函数,并设置start,stop及step参数进行,从原数组中切割一个新数组

import numpy as np
arr = np.arange(10)
print(arr[3])
3
import numpy as np
arr = np.arange(10)
print(arr[3])
# 从索引2开始到索引7停止,间隔为2
s = slice(2,7,2)
print(arr)
print(arr[s])
3
[0 1 2 3 4 5 6 7 8 9]
[2 4 6]

可以通过冒号分割切片参数start:stop:step来进行切片操作

import numpy as np
arr = np.arange(10)
#从索引 2 开始到索引 7 停止,间隔为2
arr2 = arr[2:7:2]
print(arr)
print(arr2)
[0 1 2 3 4 5 6 7 8 9]
[2 4 6]
冒号的解释

如果只放置一个参数,如[2],将返回与该索引相对应的单个参数。

如果为[2:],表示从该索引开始以后的所有项都将被提取。如果使用了两个参数,如[2:7],那么则提取两个索引(不包括停止索引)之间的项

import numpy as np
arr = np.arange(10)
arr2 = arr[2:]
print(arr2,"\n")
arr3 = arr[2:7]
print(arr3,"\n")
arr4 =arr.reshape(5,2)
print(arr4,"\n")
arr5 =arr4[2]
print(arr5,type(arr5),"\n")
arr6 =arr4[2:]
print(arr6,type(arr6),"\n")
[2 3 4 5 6 7 8 9] 

[2 3 4 5 6] 

[[0 1]
 [2 3]
 [4 5]
 [6 7]
 [8 9]] 

[4 5] <class 'numpy.ndarray'> 

[[4 5]
 [6 7]
 [8 9]] <class 'numpy.ndarray'> 

切片还可以包括省略号…,来使选择元组的长度与数组的维度相同。如果在行位置使用省略号,它将返回包含行的元素ndarray

import numpy as np
arr = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]])
print(arr,"\n")
#第二列元素
print(arr[...,1],"\n")
#第二行元素
print(arr[1,...],"\n")
#第二列及剩下的元素
print(arr[...,1:],"\n")
[[ 1  2  3]
 [ 4  5  6]
 [ 7  8  9]
 [10 11 12]
 [13 14 15]] 

[ 2  5  8 11 14] 

[4 5 6] 

[[ 2  3]
 [ 5  6]
 [ 8  9]
 [11 12]
 [14 15]] 

一定要支持作者哦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值