在Kaggle上用yolov5训练口罩模型并识别

该文详细介绍了如何利用labelimg软件对口罩图片进行标注,然后在Kaggle平台上配置YOLOv5算法,通过创建mask.yaml配置文件设定训练和验证数据集,修改train.py源码以适应训练过程,并最终进行模型训练和下载最佳模型权重。
摘要由CSDN通过智能技术生成

一、口罩数据采集

我们需要利用labelimg软件标记图片中的口罩。

1.新建一个文件夹,在这个文件夹中再新建两个文件夹分别是images和labels。

2.在这两个文件夹中都再新建两个文件夹,分别是train和val,这两个数据量比大约为3:1。

3.把需要标记的图片放在images-train这个文件夹中里。

4.打开labelimg,如下图。

 5.先点Open Dir打开你要标记的图片所在的文件夹。

6.再点Change Save Dir选择标完的数据放在那。

7.在标图之前,要注意把PascalVOC改成YOLO。

8.点击Create开始标图,标完点Save保存,如下图。

 二、利用Kaggle用Yolov5算法进行口罩模型数据的训练

1.下载yolov5源码

2.修改源码采用kaggele训练模型一定要修改文件的保存路径 

3.在data文件夹中增加mask.yaml

# MY dataset - first 600 training images

# Train command: python train.py --data my_dataset.yaml

# Default dataset location is next to /yolov5:

#   /parent_folder

#     /my_dataset

#     /yolov5



# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]

train: maskdata/images/train/  # 600 images #口罩训练集的路径

val: maskdata/images/val/  # 600 images #口罩验证集的路径



# number of classes

nc: 1



# class names

names: [ 'mask' ] #类别的命名

4.修改train.py中的源码

.......
def parse_opt(known=False):
    parser = arg
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值