离散数学-集合论基础

集合关系&运算
  • 包含关系
    ∅ ⊆ A ⊆ U \emptyset\subseteq\mathbf{A}\subseteq\mathbf{U} AU
  • 相等:每个元素均相等

证明方法:(反对称性)
A ⊆ B B ⊆ A }    ⟹    A = B \left. \begin{aligned} \mathbf{A}\subseteq\mathbf{B}\\ \mathbf{B}\subseteq\mathbf{A} \end{aligned} \right\} \implies \mathbf{A} = \mathbf{B} ABBA}A=B

  • 交并补差
集合族

集合本身可作为另一个集合元素
若有集合B, ∀ β ∈ B {\forall\beta\in\mathbf{B}} βB , A β {A_\beta} Aβ 为集合,则称集合
{ A β   ∣ β ∈ B } \{A_\beta\space\vert \beta \in \mathbf{B}\} {Aβ βB}
为以B为下标集,所有 A β A_{\beta} Aβ 为元素的集合族

幂集

设A为集合,A所有子集组成的集合称为A的幂集
P ( A ) = { X   ∣ X ⊆ A } \mathbf{P(A)} = \{X\space\vert X\subseteq\mathbf{A}\} P(A)={X XA}

n元组和笛卡尔积

有别于集合,n元组对象有顺序

从n个集合 D 1 , D 2 , ⋯   , D n {D_1,D_2,\cdots ,D_{n}} D1,D2,,Dn 中依次各选择一个元素构成n元组,所有这样的n元组构成的集合即 D 1 , D 2 , ⋯   , D n {D_1,D_2,\cdots ,D_{n}} D1,D2,,Dn 的笛卡尔积
例:
A = { 1 , 2 , 3 } , B = { a , b } \mathbf{A} = \{1,2,3\},\mathbf{B} = \{a,b\} A={1,2,3},B={a,b}

A × B = { ( 1 , a ) , ( 2 , a ) , ( 3 , a ) , ( 1 , b ) , ( 2 , b ) , ( 3 , b ) } \mathbf{A} \times \mathbf{B} = \{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)\} A×B={(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)}
一般地
A × B = { ( a , b ) ∣ a ∈ A , b ∈ B } \mathbf{A} \times \mathbf{B}=\{(a,b) \vert a \in \mathbf{A},b \in \mathbf{B}\} A×B={(a,b)aA,bB}

广义交/并

设A为集合族
由A中元素的元素组成的集合称为集合族A的广义并,记为
⋃ A \bigcup\mathbf{A} A
若A非空由A中所有元素的公共元素组成的集合称为集合族A的广义交

集合恒等式
  • 结合律
    A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C \mathbf{A} \cup(\mathbf{B}\cup\mathbf{C}) = (\mathbf{A} \cup\mathbf{B})\cup\mathbf{C} A(BC)=(AB)C
  • 分配律
    A ∪ ( B ∩ C ) = ( A ∪ ( B ) ∩ ( A ∪ ( C ) \mathbf{A} \cup(\mathbf{B}\cap\mathbf{C}) = (\mathbf{A} \cup(\mathbf{B})\cap(\mathbf{A} \cup(\mathbf{C}) A(BC)=(A(B)(A(C)
  • 德摩根律
    A ∪ B ‾ = A ‾ ∩ B ‾ \overline{\mathbf{A}\cup\mathbf{B}} = \overline{\mathbf{A}}\cap\overline{\mathbf{B}} AB=AB
  • 差集
    A − B = A ∩ B ‾ \mathbf{A} - \mathbf{B} = \mathbf{A}\cap\overline{\mathbf{B}} AB=AB
    利用上述基本恒等式,可进行集合演算
对偶原理

将命题 P {P} P 中的交,并,全集,空集分别替换为并,交,空集,全集得到新命题 P ∗ {P^*} P ,两命题互为对偶命题

有限集计数

记|A|为有限集A中元素个数
**容斥原理

  • ∣ A ∣ ∪ B ∣ = ∣ A ∣ + ∣ B ∣ − ∣ A ∩ B ∣ \mid\mathbf{A}\mid\cup\mathbf{B}\mid=\mid\mathbf{A}\mid+\mid\mathbf{B}\mid-\mid\mathbf{A}\cap\mathbf{B}\mid AB∣=∣A+BAB
  • ∣ A × B ∣ = ∣ A ∣ ∣ B ∣ \mid\mathbf{A}\times\mathbf{B}\mid = \mid\mathbf{A}\mid\mid\mathbf{B}\mid A×B∣=∣A∣∣B 笛卡尔积
  • ∣ P ( A ) ∣ = 2 ∣ A ∣ \mid P(\mathbf{A})\mid=2^{\mid\mathbf{A}\mid} P(A)∣=2A
罗素悖论

罗素将所有集合分为两类,其中一类集合自身是自己的一个元素,第二类集合其为自身不属于自己
定义
S = { x ∣ x ∉ x } S = \{ x\mid x\notin x\} S={xx/x}
命题 S ∈ S S\in S SS 即为罗素悖论

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值