参数方程(含摆线)

目录

直线参数方程

应用 

 平面曲线参数方程

摆线

参数方程(向量求法):

 y=0时图像的确定

弧长

小例子:推导开普勒第二定律


直线参数方程

直线参数方程:动点运动轨迹

 解法(引入参量t):

\vec{Q_0Q_t} = t\vec{Q_0Q_1}\\ <x(t)+1,y(t)-2,z(t)-2>= t<2,1,-3>

解得:

\begin{cases} x(t) = 2t-1 \\ y(t) = t +2 \\ z(t) = -3t+2 \\ \end{cases} 

应用 

 例1:给定两平面,求交线参数方程

思路:确定两平面法向量,通过叉乘找到交线方向  

v = <1,1,1>\times<1,2,3>= \begin{vmatrix}i & j & k\\1 & 1 & 1\\1 & 2 & 3 \\\end{vmatrix} = <1,-2,1>

再仿照例一思路,确定向量起点

取P0 = (0,1,0)

得参数方程

\begin{cases} x(t) = t \\ y(t) = 1-2t \\ z(t) = t \\ \end{cases}

 

例2:求过两点直线与平面交点

Q0(-1,2,2) Q1(1,3,-1) 平面x + 2y + 4z = 7,求直线Q0Q1与平面交点

 先求直线参数方程

\begin{cases} x(t) = -1+2t \\ y(t) = 2+t \\ z(t) = 2-3t \\ \end{cases}

再代入平面方程中,求得线面相交时t的值,求得答案

 

 平面曲线参数方程

摆线

轨迹:原点随圆周滚动形成的曲线

参数方程(向量求法):

 

P为摆线上一点,以BP相对AB转过角度为参量

先写出向量OP表达式:

\vec{OP} = \vec{OA} + \vec{AB} + \vec{BP}\\ \vec{OA} = <a\theta,0>\\ \vec{AB} = <0,a>\\ \vec{BP} = <- a\sin{\theta},-a\cos{\theta}>\\ \Rightarrow \quad \vec{OP} =<a\theta- a\sin{\theta},a-a\cos{\theta}>\\

 得参数方程:

\begin{cases} x(\theta) =a\theta- a\sin{\theta} \\ y(\theta) = a-a\cos{\theta}\\ \end{cases}

 y=0时图像的确定

推导1:
取半径a = 1、

利用泰勒展开对x,y进行逼近

一阶展开时,x,y均趋近于0,此时显然需要更精确的逼近

二阶展开时,

 进而推出

 图像在原点处斜率为正无穷,答案自然为选项4

推导2:

求x,y关于theta的二阶导

x^{''}(\theta) = \sin{\theta} \rightarrow 0\\ y^{''}(\theta) = \cos{\theta} \rightarrow 1\\

可得 x 在零点附近变化较小,y则迅速变化,类似地可推出相同结论

弧长

类似于速率对时间求积分得出路程

 

小例子:推导开普勒第二定律

 先用向量叉乘表示行星扫过三角形面积

 故只需证明r,v向量叉乘结果为常量,不随时间改变(即对t求导结果为0)

 向量v自身叉乘为0,向量r与加速度同向,叉乘也为0

最终推出扫过面积不随时间改变,即开普勒第二定律

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值