概率论01 事件与概率内容总览

1.1 基本概念

  • 随机试验(E):对随机现象进行观察
  • 样本点( ω {\omega} ω):随机试验每一个可能结果
  • 样本空间( Ω {\Omega} Ω):样本点集合,可分为离散和连续样本空间
  • 随机事件:样本点集合,是样本空间子集,一定条件下结果不同
  • 必然事件:包含所有样本点的事件
  • 基本事件:仅由一个样本点组成,每次试验必定 发生且只可能发生一个基本事件。
  • 不可能事件:不包含任何样本点的事件

1.2 随机事件

事件间关系
  • 包含:A发生必然使B发生,则称A包含于B,记为
    A ⊂ B \mathbf{A} \subset \mathbf{B} AB
  • 相等:同时满足A包含于B,B包含于A
  • 互不相容:A,B不能同时发生
  • 并:A,B至少一个发生(或),记为 A ∪ B {\mathbf{A}\cup\mathbf{B}} AB不一定为A+B
  • 交:A,B同时发生(与),记为 A ∩ B {\mathbf{A}\cap\mathbf{B}} AB A B {\mathbf{A}\mathbf{B}} AB
  • 差:A发生而B不发生,记为A\B ,不一定为A - B
  • 对称差:A\B + B\A
  • 对立:事件 Ω \ A {\Omega \backslash \mathbf{A}} Ω\A ,记为 A ‾ \overline{A} A

注:

  1. A,B互不相容,当且仅当AB= 0
  2. AB = 0时,将 A ∪ B {\mathbf{A} \cup \mathbf{B}} AB 写为A+B
  3. A ⊂ B {\mathbf{A}\subset\mathbf{B}} AB 时,可将B\A写为B-A
  4. A 1 A 2 ⋯ A n {\mathbf{A_1}\mathbf{A_2}\cdots\mathbf{A_n}} A1A2An 取并(至少一个发生),可记为 ⋃ i = 1 n A i {\bigcup_{i=1}^n\mathbf{A_i}} i=1nAi
  5. 事件间运算律,可参见集合论中相关运算律
    对偶公式:
    ( 1 ) A ∪ B ‾ = A ‾ ∩ B ‾ ( 2 ) A ∩ B ‾ = A ‾ ∪ B ‾ (1)\overline{\mathbf{A}\cup\mathbf{B}} = \overline{\mathbf{A}}\cap\overline{\mathbf{B}} \qquad(2)\overline{\mathbf{A}\cap\mathbf{B}} = \overline{\mathbf{A}}\cup\overline{\mathbf{B}} (1)AB=AB(2)AB=AB
    一个小问题: A B ‾ \overline{AB} AB 等于 A ‾ × B ‾ \overline{A}\times\overline{B} A×B 吗?
    由上述公式 A B ‾ = A ∩ B ‾ = A ‾ ∪ B ‾ \overline{AB}=\overline{A\cap B} = \overline{A}\cup\overline{B} AB=AB=AB ,显然不等于 A ‾ × B ‾ \overline{A}\times\overline{B} A×B
    而从事件含义上看, A B ‾ \overline{AB} AB 表示事件A,B不同时发生概率,而 A ‾ × B ‾ \overline{A}\times\overline{B} A×B 表示A不发生且B不发生,含义不同
事件域

f \mathcal{f} f 是由样本空间 Ω {\Omega} Ω 部分子集(不同随机事件)组成的集合族,若 f {\mathcal{f}} f 满足

  1. Ω ∈ f {\Omega\in\mathcal{f}} Ωf
  2. A ∈ f \mathbf{A}\in\mathcal{f} Af A ‾ ∈ f \overline{\mathbf{A}}\in\mathcal{f} Af
  3. ∀ n ≥ 1 , A n ∈ f \forall n \geq1,\mathbf{A_n} \in\mathcal{f} n1,Anf ,且 ⋃ i = 1 n A i ∈ f \bigcup_{i=1}^n\mathbf{A_i}\in\mathcal{f} i=1nAif
    f \mathcal{f} f 为样本空间上事件域, f \mathcal{f} f 对样本空间上事件的有限交并封闭

补个例题:
在这里插入图片描述

  1. 由事件域定义, ∀ n ≥ 1 , A n ∈ f \forall n \geq1,\mathbf{A_n} \in\mathcal{f} n1,Anf ,且 ⋃ i = 1 n A i ∈ f \bigcup_{i=1}^n\mathbf{A_i}\in\mathcal{f} i=1nAif ,由 A , B ∈ f \mathbf{A},\mathbf{B}\in\mathcal{f} A,Bf ,故 A ∪ B ∈ f \mathbf{A}\cup\mathbf{B}\in\mathcal{f} ABf
  2. A B ∈ A \mathbf{A}\mathbf{B}\in\mathbf{A} ABA ,又 A , B ∈ f \mathbf{A},\mathbf{B}\in\mathcal{f} A,Bf A B ∈ f \mathbf{A}\mathbf{B}\in\mathcal{f} ABf
  3. A \ B ∈ A \mathbf{A}\backslash \mathbf{B}\in\mathbf{A} A\BA ,又 A , B ∈ f \mathbf{A},\mathbf{B}\in\mathcal{f} A,Bf A \ B ∈ f \mathbf{A}\backslash\mathbf{B}\in\mathcal{f} A\Bf
  4. A Δ B ∈ A ∪ B \mathbf{A}\Delta\mathbf{B}\in\mathbf{A}\cup\mathbf{B} AΔBAB ,由1有 A Δ B ∈ f \mathbf{A}\Delta\mathbf{B}\in\mathcal{f} AΔBf

1.3 概率及其性质

公理化定义

  1. 非负性
    P ( A ) ≥ 0 P(A) \geq 0 P(A)0
  2. 正则性
    P ( Ω ) = 1 P(\Omega) = 1 P(Ω)=1
  3. 可列可加性(对互不相容事件)
    P ( ∑ n = 1 ∞ A n ) = ∑ n = 1 ∞ P ( A n ) P(\sum_{n = 1}^\infty\mathbf{A_n}) = \sum_{n = 1}^\infty P(\mathbf{A_n}) Pn=1An=n=1PAn
    注:
    概率是自变量为是集合的函数

性质

  1. AB = 0时, P ( A + B ) = P ( A ) + P ( B ) {P(\mathbf{A} + \mathbf{B}) = P(\mathbf{A})+P(\mathbf{B})} P(A+B)=P(A)+P(B)
  2. A ⊃ B {\mathbf{A}\supset\mathbf{B}} AB P ( A − B ) = P ( A ) − P ( B ) {P(\mathbf{A} - \mathbf{B}) = P(\mathbf{A})-P(\mathbf{B})} P(AB)=P(A)P(B) ,一般地, P ( A \ B ) = P ( A ) − P ( A B ) {P(\mathbf{A} \backslash \mathbf{B}) = P(\mathbf{A})-P(\mathbf{A}\mathbf{B})} P(A\B)=P(A)P(AB)
  3. P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(\mathbf{A}\cup\mathbf{B})=P(\mathbf{A})+P(\mathbf{B})-P(\mathbf{A}\mathbf{B}) P(AB)=P(A)+P(B)P(AB)
    P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(\mathbf{A}\cup\mathbf{B}\cup\mathbf{C})=P(\mathbf{A})+P(\mathbf{B})-P(\mathbf{A}\mathbf{B})-P(\mathbf{A}\mathbf{C})-P(\mathbf{B}\mathbf{C})+P(\mathbf{A}\mathbf{B}\mathbf{C}) P(ABC)=P(A)+P(B)P(AB)P(AC)P(BC)+P(ABC) 推广得庞加莱公式:
    P ( ⋃ i = 1 n A i ) = ∑ m = 1 n ( − 1 ) m − 1 S m P(\bigcup_{i=1}^n\mathbf{A_i})=\sum_{m = 1}^n(-1)^{m-1}S_m P(i=1nAi)=m=1n(1)m1Sm

下面使用数学归纳法证明:
n = 1时, P ( A 1 ) = S 1 P(A_1) = S_1 P(A1)=S1
n = 2时 , P ( A 1 ∪ A 1 ) = P ( A 1 ) + P ( A 2 ) − P ( A 1 A 2 ) P(\mathbf{A_1}\cup\mathbf{A_1})=P(\mathbf{A_1})+P(\mathbf{A_2})-P(\mathbf{A_1}\mathbf{A_2}) P(A1A1)=P(A1)+P(A2)P(A1A2)
若n =m时,该公式成立,则有 P ( ⋂ k = 1 m A k ) = ∑ k = 1 m P ( A k ) − ∑ i < j P ( A i A j ) + ⋯ + ( − 1 ) n + 1 P ( A 1 ⋯ A m ) P(\bigcap_{k=1}^m\mathbf{A_k}) =\sum_{k = 1}^{m}P(A_k)-\sum_{i<j}P(A_iA_j)+\cdots+(-1)^{n+1}P(A_1\cdots A_{m}) P(k=1mAk)=k=1mP(Ak)i<jP(AiAj)++(1)n+1P(A1Am)
n = m+1时,
P ( ⋂ k = 1 m + 1 A k ) = P ( A m + 1 ) + P ( ⋂ k = 1 m A k ) − P ( A m + 1 ⋂ k = 1 m A k ) = ∑ k = 1 m + 1 P ( A k ) − ∑ i < j P ( A i A j ) + ⋯ + ( − 1 ) m + 1 P ( A 1 ⋯ A m + 1 ) \begin{equation*} \begin{split} P(\bigcap_{k=1}^{m+1}\mathbf{A_k})&=P(A_{m+1})+P(\bigcap_{k=1}^m\mathbf{A_k})-P(A_{m+1}\bigcap_{k=1}^m\mathbf{A_k})\\ &= \sum_{k = 1}^{m+1}P(A_k)-\sum_{i<j}P(A_iA_j)+\cdots+(-1)^{m+1}P(A_1\cdots A_{m+1}) \end{split} \end{equation*} P(k=1m+1Ak)=P(Am+1)+P(k=1mAk)P(Am+1k=1mAk)=k=1m+1P(Ak)i<jP(AiAj)++(1)m+1P(A1Am+1) 符合原命题结构,得证

概率计算方法

古典方法

条件:

  • 样本空间有限
  • 每个事件等可能
    如此,事件发生概率与所含样本点个数成正比,用|A|表示事件A所含样本点个数
    P ( A ) = ∣ A ∣ ∣ Ω ∣ P(A) = \frac{\mid A\mid}{\mid\Omega\mid} P(A)=ΩA
    可结合对立事件等计算概率

例1: 口袋中有n-1个黑球,1个白球,每次随机摸一球,并换入一个黑球求取k次时取到的球是黑球的概率

A k A_k Ak 表示第k次时取到的球是黑球, P ( A 1 ) = n − 1 n P(A_1)=\frac{n-1}{n} P(A1)=nn1
由于一次取到白球后,之后取到的全是黑球,故事件 A k ‾ \overline{A_k} Ak 可表示为 A 1 A 2 … A k − 1 A k ‾ A_1A_2\dots A_{k-1}\overline{A_k} A1A2Ak1Ak ,则
P ( A k ) = 1 − p ( A k ‾ ) = 1 − P ( A 1 A 2 … A k − 1 A k ‾ ) = n k − ( n − 1 ) k − 1 n k P(A_k) = 1 - p(\overline{A_k}) = 1-P(A_1A_2\dots A_{k-1}\overline{A_k}) = \frac{n^k-(n-1)^{k-1}}{n^k} P(Ak)=1p(Ak)=1P(A1A2Ak1Ak)=nknk(n1)k1

频率方法

用频率稳定值代替概率

几何方法

借助面积/体积等计算
条件:

  • 样本空间为n维空间中有界区域, L ( Ω ) > 0 L(\Omega) > 0 L(Ω)>0
  • 每个样本点落在子区域内概率与该区域度量成正比
    用L(A)表示A的度量
    P ( A ) = L ( A ) L ( Ω ) P(A) = \frac{L(A)}{L(\Omega)} PA=L(Ω)L(A)
    例:Buffon投针问题
    平面上有许多间距为a的等距平行 线,随机地往上扔一根长为l(l < a)的针,求针与平行线 相交的概率。
    在这里插入图片描述
条件概率

在给定概率空间 ( Ω , f , P ) (\Omega,f,P) (Ω,f,P) 中,事件B满足 B ∈ f B \in f Bf , P ( B ) > 0 P(B) > 0 P(B)>0,则 ∀ A ∈ f \forall A \in f Af
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B) = \frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)

性质:

  • 非负: P ( A ∣ B ) ≥ 0 P(A|B) \geq 0 P(AB)0

  • 正则: P ( Ω ∣ B ) = 1 P(\Omega|B) = 1 P(Ω∣B)=1

  • 可列可加性:
    P ( ∑ n = 1 ∞ A n ∣ B ) = ∑ n = 1 ∞ P ( A n ∣ B ) P(\sum_{n = 1}^\infty\mathbf{A_n}|\mathbf{B}) = \sum_{n = 1}^\infty P(\mathbf{A_n}|\mathbf{B}) Pn=1AnB=n=1PAnB

  • 特殊性质
    P ( A ‾ ∣ B ) = 1 − P ( A ∣ B ) P(\overline{A}|B) = 1 - P(A|B) P(AB)=1P(AB)
    P ( A ∪ C ∣ B ) = P ( A ∣ B ) + P ( C ∣ B ) − P ( A ∩ C ∣ B ) P(A\cup C|B) = P(A|B) +P(C|B) - P(A\cap C|B) P(ACB)=P(AB)+P(CB)P(ACB)

逆用条件概率公式可推导乘法公式
P ( A B ) = P ( A ∣ B ) P ( B ) P(AB) = P(A|B)P(B) P(AB)=P(AB)P(B)
推广可得 P ( A 1 A 2 ⋯ A n ) = ( P ( A 1 ) P ( A 2 ∣ A 1 ) ⋯ P ( A n ∣ A 1 ⋯ A n − 1 ) P(A_1A_2\cdots A_n) = (P(A_1)P(A2|A1)\cdots P(A_n|A_1\cdots A_{n-1}) P(A1A2An)=(P(A1)P(A2∣A1)P(AnA1An1)

还可推导得出全概率公式
P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(A) = P(A|B)P(B)+P(A|\overline{B})P(\overline{B}) P(A)=P(AB)P(B)+P(AB)P(B)
推广可得,若 B 1 ⋯ B k B_1\cdots B_k B1Bk 为样本空间f的一组分割, ∀ A ∈ f \forall A\in f Af ,有
P ( A ) = ∑ i = 1 k P ( B i ) P ( A ∣ B i ) P(A) = \sum_{i=1}^kP(B_i)P(A|B_i) P(A)=i=1kP(Bi)P(ABi)
易见 P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(A) = P(A|B)P(B)+P(A|\overline{B})P(\overline{B}) P(A)=P(AB)P(B)+P(AB)P(B) 为上式的特殊形式,其中, B , B ‾ B,\overline{B} B,B 为样本空间一组分割

例:抽签
在这里插入图片描述

贝叶斯公式
在这里插入图片描述

证明思路: P ( B j ∣ A ) = P ( A B j ) P ( A ) P(B_j|A) = \frac{P(AB_j)}{P(A)} P(BjA)=P(A)P(ABj) ,将 P ( A B j ) P(AB_j) P(ABj) 逆用条件概率展开,P(A)使用该分割下全概率公式可得
P ( B j ) P(B_j) PBj) 可视为事件A发生的条件,因而称为先验概率,而 P ( B j ∣ A ) P(B_j|A) P(BjA) 可视为已知最后结果,反求先验概率。更通俗的来说,由于A的 发生,有了新的信息后,再对导致 A 发生的原因发生的可能性大小重新加 以修正

独立事件

一般来说, P ( A ∣ B ) ≠ P ( A ) P(A|B) \neq P(A) P(AB)=P(A) 则表明事件A的发生受B的影响
P(AB) = P(A)P(B)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值