问题描述
有 NN 件物品和一个体积为 MM 的背包。第 ii 个物品的体积为 vivi,价值为 wiwi。每件物品只能使用一次。
请问可以通过什么样的方式选择物品,使得物品总体积不超过 MM 的情况下总价值最大,输出这个最大价值即可。
输入格式
第一行输入两个正整数 N,MN,M。(1≤N,M≤1000)(1≤N,M≤1000)
接下来 NN 行,每行输入两个整数 vi,wivi,wi。(0≤vi,wi≤1000)(0≤vi,wi≤1000)
输出格式
输出一个整数,表示符合题目要求的最大价值。
样例输入
4 5
1 2
2 4
3 4
4 5
样例输出
8
说明
你可以选择第二个物品和第三个物品。
运行限制
语言 | 最大运行时间 | 最大运行内存 |
---|---|---|
C++ | 1s | 256M |
C | 1s | 256M |
Java | 2s | 256M |
Python3 | 3s | 256M |
PyPy3 | 3s | 256M |
Go | 3s | 256M |
JavaScript | 3s | 256M |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int N=scan.nextInt();
int M=scan.nextInt();
int[] v=new int[N];
int[] w=new int[N];
for(int i=0;i<N;i++){
v[i]=scan.nextInt();
w[i]=scan.nextInt();
}
int[][] dp=new int[N+1][M+1];
for(int i=1;i<=N;i++){
for(int j=1;j<=M;j++){
if(j<v[i-1]){
dp[i][j]=dp[i-1][j];
}
else {
dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-v[i-1]]+w[i-1]);
}
}
}
System.out.println(dp[N][M]);
scan.close();
}
}
/*
外层循环遍历物品数量i(从 1 到N),对于每个物品,内层循环遍历背包容量j(从 1 到M)。
当考虑放入第i个物品时,有两种情况:
如果当前背包容量j小于第i个物品的体积v[i - 1],
那么这个物品无法放入背包,此时dp[i][j]的值就等于不考虑这个物品时(即前i - 1个物品)
在容量为j的背包中的最大价值,也就是dp[i - 1][j]。
如果背包容量j大于等于第i个物品的体积v[i - 1],就需要考虑是否放入这个物品来获得更大的价值。
此时dp[i][j]的值是dp[i - 1][j](不放入第i个物品时的最大价值)
和dp[i - 1][j - v[i - 1]]+w[i - 1](放入第i个物品后的最大价值,
其中dp[i - 1][j - v[i - 1]]是放入第i个物品后,前i - 1个物品在剩余容量为j - v[i - 1]的背包中的最大价值,
再加上第i个物品的价值w[i - 1])中的最大值。
*/