坐标变换(其一)CSP

坐标变换(其一)

问题描述

对于平面直角坐标系上的坐标 (x,y),小 P 定义了一个包含 n 个操作的序列 T=(t1,t2,⋯,tn)。其中每个操作 ti(1≤i≤n)包含两个参数 dxi 和 dyi,表示将坐标 (x,y) 平移至 (x+dxi,y+dyi) 处。

现给定 m 个初始坐标,试计算对每个坐标 (xj,yj)(1≤j≤m)依次进行 T 中 n 个操作后的最终坐标。

输入格式

从标准输入读入数据。

输入共 n+m+1 行。

输入的第一行包含空格分隔的两个正整数 n 和 m,分别表示操作和初始坐标个数。

接下来 n 行依次输入 n 个操作,其中第 i(1≤i≤n)行包含空格分隔的两个整数 dxi、dyi

接下来 m 行依次输入 m 个坐标,其中第 j(1≤j≤m)行包含空格分隔的两个整数 xj、yj

输出格式

输出到标准输出中。

输出共 m 行,其中第 j(1≤j≤m)行包含空格分隔的两个整数,表示初始坐标 (xj,yj) 经过 n 个操作后的位置。

样例输入

3 2
10 10
0 0
10 -20
1 -1
0 0

样例输出

21 -11
20 -10

样例说明

第一个坐标 (1,−1) 经过三次操作后变为 (21,−11);第二个坐标 (0,0) 经过三次操作后变为 (20,−10)。

评测用例规模与约定

全部的测试数据满足:n,m≤100,所有输入数据(x,y,dx,dy)均为整数且绝对值不超过 100000。

#include<bits/stdc++.h>
using namespace std;

int dx[101],dy[101];
int x[101],y[101];

int main()
{
	int n,m;
	cin>>n>>m;
	int i,j;
	for(i=0;i<n;i++)
	{
		cin>>dx[i]>>dy[i];
	}
	for(i=0;i<m;i++)
	{
		cin>>x[i]>>y[i];
		int a=x[i],b=y[i];
		for(j=0;j<n;j++)
		{
			a+=dx[j];
			b+=dy[j];
		}
		cout<<a<<" "<<b<<endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

命运从未公平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值