47. 全排列 II(力扣LeetCode)

47. 全排列 II

题目描述

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

输入:nums = [1,1,2]
输出:
[[1,1,2],
[1,2,1],
[2,1,1]]

示例 2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

回溯算法

class Solution {
public:
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        // 为了方便地检测重复,先将数组排序
        sort(nums.begin(), nums.end());
        // 使用一个布尔数组来标记哪些数字已经被使用过了
        vector<bool> used(nums.size(), false);
        // 调用回溯函数来搜索所有排列
        backtracking(nums, used);
        // 返回最终的结果集
        return result;
    }

private:
    vector<vector<int>> result; // 用于存放最终的排列结果
    vector<int> path;           // 用于存放当前路径,即当前的排列

    // 回溯函数
    void backtracking(vector<int>& nums, vector<bool>& used) {
        // 如果当前路径的长度等于nums的长度,则表明这是一个完成的排列
        if (path.size() == nums.size()) {
            result.push_back(path); // 将当前路径加入到结果集中
            return; // 结束当前递归
        }
        // 遍历nums,尝试每一种可能
        for (int i = 0; i < nums.size(); i++) {
            // 如果当前数字已经被使用过,或者是一个重复的排列则跳过
            if (used[i] || (i > 0 && nums[i] == nums[i - 1] && !used[i - 1])) {
                continue;
            }
            // 将当前数字标记为已使用
            used[i] = true;
            // 将当前数字加入到当前路径
            path.push_back(nums[i]);
            // 继续递归填下一个数
            backtracking(nums, used);
            // 回溯,撤销上一个操作
            used[i] = false; // 将当前数字标记为未使用
            path.pop_back(); // 从当前路径移除当前数字
        }
    }
};

这段代码使用了回溯法搜索所有可能的排列。关键点在于如何避免重复的排列:

  • 在开始任何操作前,数组先被排序,这使得相同的数字都相邻,从而更容易检测重复。
  • 使用一个布尔数组used来标记哪些数字已经被放入当前路径中。
  • 当尝试填入一个数字到路径时,如果这个数字和前一个数字相同,并且前一个数字没有被使用过(即当前的数字和前一个数字在原数组中是相邻的),则跳过这个选项。这是因为前一个数字在当前位置生成的排列已经被考虑过了。

此算法能够高效地生成所有不重复的排列,其时间复杂度取决于生成的排列数目以及每个排列的长度,但由于使用了剪枝策略,避免了不必要的搜索,提高了效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

命运从未公平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值