【刷题笔记】--盛最多水的容器--双指针

文章介绍了如何使用双指针法解决找到两个柱子形成最大水量的问题。通过从数组两端开始,每次都计算当前宽度下的最大面积,并移动较矮的柱子,逐步缩小搜索空间,最终找到最大面积。文中提到的一种优化思路是如果移动left指针后高度减小,则可跳过比较直接移动,但在实际实现中可能导致超时。
摘要由CSDN通过智能技术生成

题目:

给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。

找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

返回容器可以储存的最大水量。

说明:你不能倾斜容器。

示例 1:

输入:[1,8,6,2,5,4,8,3,7]
输出:49 
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。


思路: 

如果这道题用暴力来解的话,就是两个for循环,让每根柱子和后面的每一根柱子围成的面积中筛选出最大的。

那么我们就需要在空白的格里依次筛选。有没有什么方法可以先排除一些格子的?

如果用双指针,left指向数组头a[0],right指向数组尾a[8]。 

此时,宽度是最大的,我们要想面积变大,我们肯定需要让高度变大。所以我们会想要让指针所指的那个更小的数的指针去移动。

①如果a[0]<a[8],那么移动left;

②如果a[8]<a[0],那么移动right;

第①种情况下,我们就会将i=0的那一排的所有空白格给排除。为什么这样排除不会漏?因为a[0]已经是较小的数了,不管它是和比它更大的数组成面积,但高度不会变,宽度变小,面积最后还是变小。它和比它更小的数组成面积,高度变小,宽带变小,面积变小。

同理第②种情况下,排除了i=8的那一列的所有空白格。

这就是缩减搜索空间的思想。

上述思路参考

 O(n) 双指针解法:理解正确性、图解原理(C++/Java) - 盛最多水的容器 - 力扣(LeetCode)


我自己的思路:

我比这个思路还多想了一步就是如果left指针向右移后的数组大小比原来的还小,可以直接跳过max,min的比较大小的步骤,然后直接继续left指针向后移。但是结果超时了,或者代码没写好。


 代码:

int min(int a,int b){
    if(a<b){
        return a;
    }
    return b;
}
int max(int a,int b){
    if(a>b){
        return a;
    }
    return b;
}
int maxArea(int* height, int heightSize){
    int left=0;
    int right=heightSize-1;
    int max1=0;
    while(left<right){
        int min1=min(height[left],height[right]);
        int area=min1*(right-left);
        max1=max(max1,area);
        if(height[left]<=height[right]){
            left++;
        }
        else{
            right--;
        }
    }
    return max1;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值