模块一——双指针:11.盛最多水的容器

本文介绍了11.盛最多水的容器问题的两种解法:暴力枚举(可能导致超时)和双指针结合单调性优化。暴力枚举通过枚举所有可能的容器来寻找最大容积,而双指针法利用单调性减少不必要的比较,时间复杂度为O(N),空间复杂度为O(1)。
摘要由CSDN通过智能技术生成

题目解析

题目链接:11.盛最多水的容器
在这里插入图片描述
这道题简单理解为要我们求长方形的面积就行了。

算法原理

解法一:暴力枚举(超时)

枚举出能构成的所有容器,找出其中容积最⼤的值。
容器容积的计算⽅式:
设两指针left,right分别指向⽔槽板的最左端以及最右端,此时容器的宽度为right-left。由于容器的⾼度由两板中的短板决定,因此可得容积公式: v = (right-left) * min( height[left], height[right]).

解法二:双指针+单调性

  • 设两个指针left ,right 分别指向容器的左右两个端点,此时容器的容积: v = (right - left) * min(height[right], height[left])
  • 容器的左边界为height[left] ,右边界为height[right] 。
  • 为了⽅便叙述,我们假设「左边边界」⼩于「右边边界」。

如果此时我们固定⼀个边界,改变另⼀个边界,⽔的容积会有如下变化形式:

  • 容器的宽度⼀定变⼩。
  • 由于左边界较⼩,决定了⽔的⾼度。如果改变左边界,新的⽔⾯⾼度不确定,但是⼀定不会超过右边的柱⼦⾼度,因此容器的容积可能会增⼤。
  • 如果改变右边界,⽆论右边界移动到哪⾥,新的⽔⾯的⾼度⼀定不会超过左边界,也就是不会超过现在的⽔⾯⾼度,但是由于容器的宽度减⼩,因此容器的容积⼀定会变⼩的。

由此可⻅,左边界和其余边界的组合情况都可以舍去。所以我们可以left++ 跳过这个边界,继续去判断下⼀个左右边界。
当我们不断重复上述过程,每次都可以舍去⼤量不必要的枚举过程,直到left 与right 相遇。期间产⽣的所有的容积⾥⾯的最⼤值,就是最终答案。

代码实现

暴力枚举(超时)

class Solution {
public:
    int maxArea(vector<int>& height) {
        int maxVolume = 0,n = height.size();
        for(int left = 0;left < n;left++)
        {
            for(int right = left;right < n;right++)
            {
                maxVolume = max(maxVolume,(right - left) * min(height[left],height[right]));
            }
        }
        return maxVolume;
    }
};

双指针+单调性(时间复杂度为O(N),空间复杂度为O(1))

class Solution {
public:
    int maxArea(vector<int>& height) {
        int left = 0,right = height.size() - 1;//双指针
        int maxVolume = 0;//记录结果
        while(left < right){
            maxVolume = max(maxVolume,(right - left) * min(height[left],height[right]));
            if(height[left] > height[right])right--;
            else left++;
        }
        return maxVolume;
    }
};
题目中的"最多水容器"实际上是一个著名的问题,也被称为"水最多的容器"问题。该问题可以用贪心算法来解决。 首先,我们定义一个指针对数组进行遍历。初始时,指针指向数组的第一个元素,指针指向数组的最后一个元素。我们计算当前指针所指向的两个元素构成的容器面积容器面积是由两个因素决定的,即两个指针之间的距离和指针所指向的较小的元素的高度。我们将这个面积记录下来,并与之前的最大面积进行比较,保留最大的面积值。 接下来,我们要决定移动哪个指针。我们移动指针的原则是,每次移动指向较小元素的指针,这样才有可能找到更高的柱子,进而获得更大的面积。假设当前指针指向的元素较小,那么我们将指针向移动一位。否则,如果指针指向的元素较小,我们将指针向移动一位。 重复上述的过程,直到两个指针相遇为止。最后得到的最大面积即为所求。 下面是用Python编写的解法代码: def maxArea(height): left = 0 right = len(height) - 1 maxArea = 0 while left < right: area = min(height[left], height[right]) * (right - left) maxArea = max(maxArea, area) if height[left] < height[right]: left += 1 else: right -= 1 return maxArea 这段代码的时间复杂度是O(n),其中n是数组的长度。因为我们只对整个数组进行了一次遍历。因此,该解法是一个高效解法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全天

加油,大佬们!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值