【刷题笔记】--二分+贪心--P1182 数列分段 Section II

文章讲述了如何解决将一个长度为N的正整数数列分成M段,使得每段连续且每段和的最大值最小的问题。主要方法是使用二分查找确定最大值范围,并结合贪心算法进行分段。代码示例分别展示了基于贪心算法的直接分段法和二分查找优化法。
摘要由CSDN通过智能技术生成

题目:

对于给定的一个长度为N的正整数数列,现要将其分成 M段,并要求每段连续,且每段和的最大值最小。

关于最大值最小:

思路:  

这个数列分段后最大的值是在 这列数列中最大的数max这些数列数加一起的总和sum之间 ,所以这个区间就是我们二分查找的区间。二分查找的这个值就是我们最后的最大值,我们以二分查找的这个值去给数列进行分段,用贪心算法,如果最后分段数太少,说明二分查找的这个最大值太大,right移动,而如果分段数太多,说明二分查找的这个最大值太小,left移动。

这个贪心算法的模型就是:

对于给定的一个长度为 n 的正整数数列 ai ,现要将其分成连续的若干段,并且每段和不超过 m(可以等于 m),问最少能将其分成多少段使得满足要求。

思路:

对于已给出数列,从前往后扫描一遍,在扫描过程中,不断记录当前最大值,与给出m进行比较,若当前和大于m则记录段数,从已扫描的数的最后一个作为下一次扫描的开始。

代码:

#include<iostream>
using namespace std;
int main()
{
	int  n,m;
	int Thissum=0,count = 1;
	int a[100000];
	cin >> n;
	cin >> m;
	for (int i = 0; i < n; i++)
		cin >> a[i];
	for (int j = 0; j < n; j++)
	{
		Thissum += a[j];    //记录当前和
		if (Thissum >m)
		{
			count += 1;
			Thissum =a[j];/*当前和大于m时, 令当前和等于已处理的最后一个数
						  从这个数开始往后处理*/
		}
	}
	cout << count << endl;
	return 0;
}

代码: 

#include<stdio.h>
int max(int a,int b){
	if(a>b){
		return a;
	}
	else{
		return b;
	}
}
int main(){
	typedef long long ll;
	ll n,m,a[100005],sum=0;
	scanf("%lld %lld",&n,&m);
	int i;
	ll max1=0;
	for(i=0;i<n;i++){
		scanf("%d",&a[i]);
		sum+=a[i];
		max1=max(max1,a[i]);
	}
	ll left=max1;
	ll right=sum;
	while(left<=right){
	    
		ll mid=(left+right)/2;
		int t=0;
		int cnt=1;
		for(i=0;i<n;i++){
			t+=a[i];
			if(t>mid){
				t=a[i];
				cnt++;
			}
		}
		if(cnt<=m){
			right=mid-1;
		}
		else{
			left=mid+1;
		}
	}
	printf("%lld",right+1);
	
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值