keil一次性添加多个文件/文件夹(支持嵌套)进工程结构并自动引入头文件路径至include paths

前言

本脚本在keil一次性添加多个文件(文件夹)进工程结构_keil如何添加整个文件夹-CSDN博客的基础上进行了修改,可遍历选择文件夹下所有.c和.h文件(包含嵌套文件夹下的.c和.h文件),并将其导入所建Group内。另外可以自动将所导入的.h路径添加至include paths中,省去手动添加过程。

2025.4.4更新

脚本使用:

参考上面大佬的文章即可,操作一模一样。

脚本下载地址:
链接: https://pan.baidu.com/s/1sL4rKKO0Wlj3DM-WlIoFiA?pwd=jvts 提取码: jvts

功能演示:

例如我想将HARDWARE文件夹下的所有文件全部导入Keil,同时也需要将这些.h文件路径添加至include paths.

文件结构如下:

初始GROUP 和include paths

运行效果:

### 卷积神经网络架构图模板 对于绘制卷积神经网络(CNN)结构图,多种工具和技术能够帮助完成这任务。常用的绘图软件包括但不限于 Microsoft Visio、Lucidchart 或者更专业的 LaTeX 工具包如 TikZ/PGF。然而,在机器学习领域内,特别推荐使用专门设计来展示神经网络架构的库——Netron 和 Graphviz。 #### 使用 Netron 展示 CNN 结构 Netron 是款开源的应用程序,支持查看和编辑各种类型的机器学习模型文件。它不仅限于 TensorFlow 或 PyTorch 的 .pb, .h5, .pt 等格式,还兼容 ONNX 文件。通过加载预训练好的 AlexNet 模型文件到 Netron 中,可以直接观察整个网络层之间的连接关系以及每层的具体配置[^1]。 ```bash pip install netron netron.start('alexnet.pb') ``` #### 利用 Graphviz 创建自定义 CNN 图表 Graphviz 提供了种简单的方法来自动生成图形表示法,非常适合用来描述复杂的算法流程或网络拓扑。下面是个简单的例子,展示了如何创建个基本版本的 CNN 架构图: ```dot digraph G { node [shape=box]; input -> conv1; conv1 -> relu1; relu1 -> pool1; pool1 -> fc1; fc1 -> output; label = "Basic Convolutional Neural Network"; } ``` 这段 DOT 语言脚本定义了个非常基础的 CNN 流程:从输入开始经过次卷积操作 `conv1` 后接 ReLU 激活函数 `relu1` ,之后是最大池化层 `pool1` ,最后链接全连接层 `fc1` 并输出结果。当然实际应用中的 CNN 可能会更加复杂,包含多个这样的模块堆叠而成[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无︸由

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值