深度学习|反向传播算法

本文详细介绍了反向传播算法在深度学习中的核心作用,包括其理论基础、在PyTorch中的应用以及底层实现原理。重点讲解了神经网络结构、前向传播、梯度计算和权重更新的过程,并强调了理解链式法则对于深入学习的重要性。
摘要由CSDN通过智能技术生成

反向传播算法是深度学习中最核心的概念之一。它是一种有效的算法,用于计算神经网络中权重对损失函数的梯度。这个过程是神经网络学习过程的关键,因为这些梯度随后用于通过优化算法如梯度下降更新网络的权重,从而最小化损失函数。

理论基础

为了理解反向传播,我们需要理解以下几个重要概念:

  1. 神经网络架构:最基础的神经网络架构包括输入层、隐藏层和输出层。网络的每一层都由一系列的节点(称为神经元)组成。每个神经元都与下一层的每个神经元通过权重连接。

  2. 前向传播:输入数据通过网络的过程,从输入层通过隐藏层到输出层,并在每一层中生成激活值。

  3. 损失函数:用于评估模型预测与真实值之间的差异。

  4. 梯度:损失函数关于权重的导数,表明了权重改变时,损失函数增减的方向和大小。

  5. 链式法则:复合函数导数的计算方法,用于计算多层神经网络中权重对损失的梯度。

反向传播的步骤

在详细的实现之前,我们需要梳理一下反向传播的步骤:

  1. 前向传播:计算网络中所有神经元的输出和最终的损失值。

  2. 计算梯度:先对输出层的神经元计算梯度,然后反向通过网络,依次计算隐藏层的梯度。

  3. 权重更新:一旦我们得到梯度,我们就用这些梯度通过优化算法(如SGD)来更新网络的权重。

PyTorch简介

在深度学习框架PyTorch中,反向传播算法被封装得非常简洁。PyTorch提供了自动求导机制,这意味着我们不需要手动编写反向传播的代码,框架会自动计算梯度。

PyTorch反向传播的底层实现

尽管PyTorch为我们自动处理了细节,但了解底层的原理是很有帮助的。

假设我们有一个简单的全连接网络,有一个隐藏层,使用PyTorch代码可以这样表示:

import torch
import torch.nn as nn
import torch.optim as optim

# 一个简单的全连接网络,1个隐藏层
class SimpleNeuralNet(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(SimpleNeuralNet, self).__init__()
        self.layer1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.layer2 = nn.Linear(hidden_size, output_size)
        
    def forward(self, x):
        x = self.layer1(x)
        x = self.relu(x)
        x = self.layer2(x)
        return x

# 初始化网络
net = SimpleNeuralNet(input_size=3, hidden_size=5, output_size=1)
criterion = nn.MSELoss()  # 比如我们用MSE作为损失函数
optimizer = optim.SGD(net.parameters(), lr=0.01)  # 使用SGD优化器

# 假设我们有一些输入数据和目标数据
input_data = torch.randn(10, 3)
target = torch.randn(10, 1)

# 前向传播
outputs = net(input_data)
loss = criterion(outputs, target)

# 反向传播
optimizer.zero_grad()  # 清空过往梯度
loss.backward()  # 自动计算所有梯度

# 更新权重
optimizer.step()

在这个框架中,实际的反向传播算法的实现细节是隐藏的,因为当我们调用 loss.backward(),PyTorch将自动计算梯度,并且当我们调用 optimizer.step(),权重将自动更新。

底层的反向传播

如果我们想了解底层是如何计算的,我们需要手动实现前向传播和反向传播。以下是一个高度简化的例子,说明了这个过程:

import torch

# 假设我们的网络只有一个权重矩阵W,没有偏置,激活函数,损失函数是MSE
# 初始化权重
W = torch.randn(2, 2, requires_grad=True)

# 输入数据和目标数据
x = torch.tensor([[1.0, 2.0]], requires_grad=True)
target = torch.tensor([[0.0]])

# 前向传播
y_pred = x.mm(W)
loss = (y_pred - target).pow(2).sum()

# 手动反向传播
# 计算损失关于W的梯度
loss.backward()

print(W.grad)  # 查看W的梯度

# 更新权重,这里我们手动设置一个学习率
learning_rate = 0.01
with torch.no_grad():  # 不追踪这些操作的梯度
    W -= learning_rate * W.grad

# 清空梯度,为下一轮学习准备
W.grad.zero_()

在这个例子中,我们可以看到,backward()函数计算了损失对每个参数的梯度,并将其存储在每个参数的.grad属性中。权重更新是手动完成的,减去了学习率乘以权重的梯度。

详细探讨链式法则

链式法则是反向传播的数学基础。如果损失函数是L,网络权重是W,并且网络的输出是y(W),那么链式法则告诉我们:

[
\frac{\partial L}{\partial W} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial W}
]

在实际应用中,计算这个梯度需要在多层网络中层层递推。例如,如果我们有近100层网络,我们会从损失函数开始,向后逐渐计算每一层的梯度直到输入层。在实现中,每一层的输出都需要在前向传播中保存下来,因为在计算反向传播梯度时需要使用。

结语

反向传播是神经网络训练的核心,而PyTorch等现代框架使用自动微分使得实现变得更加容易。但即使使用这些自动化工具,理解反向传播的底层原理也是非常重要的,因为这有助于你更好地理解模型训练的过程,以及如何调试和优化模型。

如果你想更深入地了解人工智能的其他方面,比如机器学习、深度学习、自然语言处理等等,也可以点击这个链接,我按照如下图所示的学习路线为大家整理了100多G的学习资源,基本涵盖了人工智能学习的所有内容,包括了目前人工智能领域最新顶会论文合集和丰富详细的项目实战资料,可以帮助你入门和进阶。

链接: 人工智能交流群【最新顶会与项目实战】(点击跳转)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RRRRRoyal

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值