在原始跳台阶问题上,我们知道只走1,2阶台阶的话,可以推出来斐波那契数列的形式进行计算操作。但是,在这里就是1,2,3,...n阶台阶了。其实思路是一样的。
在原始台阶问题,我们的状态方程是:f(n)=f(n-1)+f(n-2)的,这里解释为选择走一阶台阶,那么剩下有f(n-1)种走法,走2阶台阶,有f(n-2)种走法;同理,走3阶台阶,剩下f(n-3)种走法......
以此类推之后,我们得出了:f(n)=f(n-1)+f(n-2)+f(n-3)+...+f(1)+f(0).的状态方程,这样我们就可以解出来了。
注意:其实状态方程列出来之后,是一个递归的过程,我们需要知道这是怎么计算出来的,那么,n=0,1时都是一种解法,n=2时就是2种解法了,而到了n=3的时候就是f(3)=f(2)+f(1)+f(0)了,这个时候f(3)就是4了。以此类推我们可以发现,f(n)=2^(n-1),这样我们就可以放心递归了,或者你直接用这个式子计算返回值就行。
上代码:
#include <iostream>
#include<cmath>
#define MAX 100
using namespace std;
typedef long long LL;
LL sum(int n){
if(n==0)
return 1;
else if(n==1)
return 1;
else if(n==2)
return 2;
else
return 2*sum(n-1);
}
int main() {
int n;
cin>>n;
cout<<sum(n)<<endl;
}