202312-2 因子化简
1. 解题思路
- 使用质数筛法,一次计算得到范围在 1 0 5 10^5 105的质数,减少对质数重复计算。
- 先将正整数分解为质因子,用二维数组记录各个质因子及其对应指数。
- 对记录质因子的二维数组遍历,将指数大于等于查询值的质因子乘起来作为结果。
将正整数分解为质因子:
- 初始化得到质数表,正整数赋值给
a
- 选择质数表中第 i 个质数(初始时 i = 1)
- 判断
a
是否能整除质数:- 若a可以整除选择的质数,则将该质数记录为质因子,对应的指数加 1。
a
的值赋为商。 - 若不可以整除,则 i 增加 1
- 若a可以整除选择的质数,则将该质数记录为质因子,对应的指数加 1。
- 重复步骤 2 和 3,直到
a
的值为 1 或质数表遍历到末尾。
2. 代码实现
C++题解:
#include <iostream>
#include <vector>
#include <math.h>
using namespace std;
int main() {
int num;
cin >> num;
// 二维数组a存放输入每行的正整数和查询个数
vector<vector<long long>> a(num, vector<long long>(2));
for (int i = 0; i < num; i++) {
cin >> a[i][0];
cin >> a[i][1];
}
// 质数表,线性筛法,减少重复计算
vector<int> b;
int n = pow(10,5);
int p_len = 0;
int i, j;
for (i = 2; i < n; i++) {
int m = sqrt(i); // 开根号,减少计算量
for (j = 2; j <= m; j++) {
if (i % j == 0) {
break;
}
}
if (j > m) {
p_len++;
b.push_back(i);
// cout << i << ", ";
}
}
int length = p_len;
for (int i = 0; i < num; i++) {
int count = -1;
vector<vector<int>> c; // 存放质数因子
// 遍历质数表
for (int j = 0; j < length; j++) {
bool flag = true;
while (a[i][0] % b[j] == 0 && a[i][0] != 0) {
// 第一次进入循环,添加新的质数因子
if (flag == true) {
count++;
c.push_back({b[j], 0});
flag = false;
}
// 对应质数因子的指数增加
c[count][1]++;
a[i][0] = a[i][0] / b[j];
}
// 商等于 1 时,退出搜寻质数表
if (a[i][0] == 1) {
break;
}
}
int c_len = c.size();
long long sum = 1;
for (int k = 0; k < c_len; k++) {
if (c[k][1] >= a[i][1]) // 指数大于查询次数,乘入结果
sum *= pow(c[k][0], c[k][1]);
}
cout << sum << endl;
}
return 0;
}