yolov5使用flask部署至前端,实现照片\视频识别

本文介绍了如何在Flask应用中集成YOLOv5进行对象检测,包括图片和视频的上传、识别功能,以及如何替换权重文件。开发者分享了相关的代码片段和实现步骤,供学习者参考和调试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

初学yolo flask时,需要此功能,Csdn、Github、B站找到许多代码,效果并不满意。
近期,再度尝试,实现简单功能。

实现功能:

  1. 上传图片并识别,可以点击图片放大查看

  2. 上传视频并识别

  3. 识别后的文件下载功能

效果图如上

文件结构如下:

project/
  static/

  空

  templates/
    index.html
    
  app.py
 

相关代码:

app.py

import cv2
import numpy as np
import torch
from flask import Flask, request, jsonify, render_template
import base64
import os
from datetime import datetime

app = Flask(__name__)

# 全局变量:模型
model = None

# 提前加载模型
def load_model():
    global model
    model = torch.hub.load('', 'custom', path='yolov5s.pt', source='local')

# 路由处理图片检测请求
@app.route('/predict_image', methods=['POST'])
def predict_image():
    global model

    # 获取图像文件
    file = request.files['image']
    # 读取图像数据并转换为RGB格式
    image_data = file.read()
    nparr = np.frombuffer(image_data, np.uint8)
    image = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED)

    results = model(image)

    image = results.render()[0]

    # 将图像转换为 base64 编码的字符串
    _, buffer = cv2.imencode('.png', image)
    image_str = base64.b64encode(buffer).decode('utf-8')

    # 获取当前时间,并将其格式化为字符串
    current_time = datetime.now().strftime('%Y%m%d%H%M%S')
    # 构建保存路径
    save_dir = 'static'
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    filename, extension = os.path.splitext(file.filename)  # 获取上传文件的文件名和扩展名
    save_filename = f'{filename}_{current_time}{extension}'
    save_path = os.path.join(save_dir, save_filename)
    cv2.imwrite(save_path, image)

    return jsonify({'image': image_str})

# 函数用于在视频帧上绘制检测结果
def detect_objects(frame, model):
    results = model(frame)
    detections = results.xyxy[0].cpu().numpy()  # 获取检测结果

    # 在帧上绘制检测结果
    for det in detections:
        # 获取边界框信息
        x1, y1, x2, y2, conf, class_id = det[:6]

        # 在帧上绘制边界框
        cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)

        # 在帧上绘制类别和置信度
        label = f'{model.names[int(class_id)]} {conf:.2f}'
        cv2.putText(frame, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
    return frame

# 路由处理视频检测请求

@app.route("/predict_video", methods=["POST"])
def predict_video():
    global model

    # 从请求中获取视频文件
    video_file = request.files["video"]
    # 保存视频到临时文件
    temp_video_path = "temp_video.mp4"
    video_file.save(temp_video_path)

    # 逐帧读取视频
    video = cv2.VideoCapture(temp_video_path)

    # 获取视频的帧率和尺寸
    fps = video.get(cv2.CAP_PROP_FPS)
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))

    # 视频写入对象
    output_video_filename = f"output_video_{datetime.now().strftime('%Y%m%d%H%M%S')}.mp4"
    output_video_path = os.path.join("static", output_video_filename)
    fourcc = cv2.VideoWriter_fourcc(*"avc1")
    out_video = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))

    # 逐帧处理视频并进行目标检测
    while True:
        ret, frame = video.read()
        if not ret:
            break

        # 进行目标检测
        detection_result = detect_objects(frame, model)

        # 将处理后的帧写入输出视频
        out_video.write(detection_result)

    # 释放视频对象
    video.release()
    out_video.release()

    return jsonify({"output_video_path": output_video_filename})

@app.route('/')
def index():
    return render_template('index.html')

# 初始加载模型
load_model()

if __name__ == '__main__':
    app.run(debug=True)

index.html

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Object Detection</title>
    <style>
        body {
            font-family: Arial, sans-serif;
            margin: 0;
            padding: 0;
            background-color: #f3f3f3;
            display: flex;
            justify-content: center;
            align-items: center;
            height: 100vh;
            flex-direction: column;
        }

        #content {
            text-align: center;
            max-width: 820px;
            margin-top: 20px;
        }

        h1 {
            color: #333;
        }

        h2 {
            color: #666;
        }

        input[type="file"] {
            margin-bottom: 10px;
        }

        .media-container {
            display: flex;
            max-width: 100%;
            margin-bottom: 20px;
        }

        .media-container:first-child {
            margin-right: 20px; /* 在第一个容器的右侧添加间隔 */
        }

        .media-container img,
        .media-container video {
            max-width: 100%;
            height: auto;
        }

        .original {
            width: 400px;
            overflow: hidden;
        }

        .processed {
            flex: 2; /* 右边容器占据剩余空间 */
        }

        button {
            padding: 10px 20px;
            background-color: #007bff;
            color: #fff;
            border: none;
            border-radius: 5px;
            cursor: pointer;
            margin-bottom: 10px;
        }

        /* 新增样式:模态框 */
        .modal {
            display: none; /* 默认隐藏 */
            position: fixed;
            z-index: 1;
            left: 0;
            top: 0;
            width: 100%;
            height: 100%;
            overflow: auto;
            background-color: rgba(0, 0, 0, 0.9); /* 半透明黑色背景 */
        }

        .modal-content {
            margin: auto;
            display: block;
            width: 80%;
            max-width: 800px;
            position: absolute;
            left: 50%;
            top: 50%;
            transform: translate(-50%, -50%);
            text-align: center; /* 居中显示图片 */
        }

        .close {
            color: #ccc;
            font-size: 36px;
            font-weight: bold;
            cursor: pointer;
            position: absolute;
            top: 10px;
            right: 10px;
        }

        .close:hover,
        .close:focus {
            color: #fff;
            text-decoration: none;
        }
        #downloadButton {
           padding: 10px 20px;
            background-color: #007bff;
            color: #fff;
            border: none;
            border-radius: 5px;
            cursor: pointer;
            margin-bottom: 10px;

        }

        /* 新增样式:响应式图片 */
        .modal-content img,
        .modal-content video {
            max-width: 100%;
            height: auto;
        }

    </style>
</head>
<body>

    <!-- 新增模态框 -->
    <div id="myModal" class="modal" onclick="closeModal()">
        <div class="modal-content" id="modalContent" onclick="stopPropagation(event)">
            <!-- 放大后的图片或视频将在这里显示 -->
            <span class="close" onclick="closeModal()">&times;</span>
        </div>
    </div>

    <div id="content">
        <h1>照片/视频检测</h1>

        <!-- 上传图片 -->
        <h2>上传图片</h2>
        <input type="file" id="imageFile" accept="image/*" onchange="displaySelectedImage()">
        <button onclick="uploadImage()">上传</button>
        <button id="downloadImageButton"  onclick="downloadProcessedImage()">下载</button>
        <br>
        <div class="media-container">
            <div class="original media-container" onclick="enlargeImage()">
                <img id="uploadedImage" src="#" alt="Uploaded Image" style="display:none;">
                <button id="zoomInButton" style="display:none;">Zoom In</button>
            </div>
            <div class="processed media-container" onclick="enlargeImage2()">
                <img id="processedImage" src="#" alt="Processed Image" style="display:none;">

            </div>
        </div>
        <br>

        <!-- 上传视频 -->
        <h2>上传视频</h2>
        <input type="file" id="videoFile" accept="video/mp4,video/x-m4v,video/*" onchange="displaySelectedVideo()">
        <button onclick="uploadVideo()">上传</button>
        <button id="downloadButton" onclick="downloadProcessedVideo()">下载</button>
        <br>
        <div class="media-container">
            <div class="original media-container" >
                <video id="uploadedVideo" src="#" controls style="display:none;"></video>
            </div>
            <div class="processed media-container">
                <video id="processedVideo" controls style="display:none;"></video>

            </div>
        </div>
        <br>

    </div>

    <script>
         // 显示选择的权重文件

        // 显示选择的图片并添加点击放大功能
        function displaySelectedImage() {
            var fileInput = document.getElementById('imageFile');
            var file = fileInput.files[0];
            var imageElement = document.getElementById('uploadedImage');
            imageElement.src = URL.createObjectURL(file);
            imageElement.style.display = 'inline';
            document.getElementById('zoomInButton').style.display = 'inline';
        }

        // 显示模态框并放大图片
        function enlargeImage() {
            var modal = document.getElementById('myModal');
            var modalImg = document.getElementById('modalContent');
            var img = document.getElementById('uploadedImage');
            modal.style.display = 'block';
            modalImg.innerHTML = '<img src="' + img.src + '">';
        }
        // 显示模态框并放大图片
        function enlargeImage2() {
            var modal = document.getElementById('myModal');
            var modalImg = document.getElementById('modalContent');
            var img = document.getElementById('processedImage');
            modal.style.display = 'block';
            modalImg.innerHTML = '<img src="' + img.src + '">';
        }


        // 显示选择的视频并添加点击放大功能
        function displaySelectedVideo() {
            var fileInput = document.getElementById('videoFile');
            var file = fileInput.files[0];
            var videoElement = document.getElementById('uploadedVideo');
            videoElement.src = URL.createObjectURL(file);
            videoElement.style.display = 'block';
        }


        // 上传图片并向后端发送请求
        function uploadImage() {
            var fileInput = document.getElementById('imageFile');
            var file = fileInput.files[0];
            var formData = new FormData();
            formData.append('image', file);

            fetch('/predict_image', {
                method: 'POST',
                body: formData
            })
            .then(response => response.json())
            .then(data => {
                var imageElement = document.getElementById('processedImage');
                imageElement.src = 'data:image/png;base64,' + data.image;
                imageElement.style.display = 'inline';
                document.getElementById('downloadImageButton').style.display = 'inline';
            })
            .catch(error => console.error('Error:', error));
        }

        // 下载处理后的图片
        function downloadProcessedImage() {
            var imageElement = document.getElementById('processedImage');
            var url = imageElement.src;
            var a = document.createElement('a');
            a.href = url;
            a.download = 'processed_image.png';
            document.body.appendChild(a);
            a.click();
            document.body.removeChild(a);
        }

        // 上传视频并向后端发送请求
        function uploadVideo() {
            var fileInput = document.getElementById('videoFile');
            var file = fileInput.files[0];
            var formData = new FormData();
            formData.append('video', file);

            fetch('/predict_video', {
                method: 'POST',
                body: formData
            })
            .then(response => response.json())
            .then(data => {
                var videoElement = document.getElementById('processedVideo');
                // 修改路径为正确的 Flask url_for 生成的路径
                videoElement.src = '{{ url_for("static", filename="") }}' + data.output_video_path;
                videoElement.style.display = 'block';
                var downloadButton = document.getElementById('downloadButton');
                downloadButton.style.display = 'block';
            })
            .catch(error => console.error('Error:', error));
        }

        // 下载处理后的视频
        function downloadProcessedVideo() {
            var videoElement = document.getElementById('processedVideo');
            var url = videoElement.src;
            var a = document.createElement('a');
            a.href = url;
            a.download = 'processed_video.mp4';
            document.body.appendChild(a);
            a.click();
            document.body.removeChild(a);
        }

        // 关闭模态框
        function closeModal() {
            var modal = document.getElementById('myModal');
            modal.style.display = 'none';
        }
    </script>
</body>
</html>

使用说明:

index.html放入templates文件夹中

运行app.py

注:此处加载模型路径更改为自己的

model = torch.hub.load('', 'custom', path='yolov5s.pt', source='local')

如果模型读取不到,显示

FileNotFoundError: [Errno 2] No such file or directory: 'hubconf.py'

去yolov5官网,下载yolov5-master到项目文件夹

并将yolov5s.pt文件复制到yolov5-master文件夹中,修改model路径

model = torch.hub.load('yolov5-master', 'custom', path='yolov5s.pt', source='local')

如有问题,可联系作者。

### FlaskYOLO集成用于目标检测 在Flask应用中集成了YOLO进行目标检测,这使得模型可以通过Web接口轻松访问并处理上传的图片或视频流。具体来说,在`app.py`文件里定义了一个路由来接收HTTP请求中的图像数据,并调用预先加载好的YOLO模型执行预测任务[^2]。 为了实现这一过程,通常会先导入必要的库: ```python from flask import Flask, request, jsonify import torch from PIL import Image import io ``` 接着初始化应用程序实例以及指定使用YOLO版本,默认情况下选择了性能较为平衡的小型网络——YOLOv8n,当然也可以根据实际需求更改为其他变体如`'yolov8m.pt'`等。 ```python app = Flask(__name__) model = torch.hub.load('ultralytics/yolov5', 'custom', path='path/to/best.pt') # 加载自定义训练后的权重 # 或者直接使用官方预训练模型 model = torch.hub.load('ultralytics/yolov5', 'yolov5s') ``` 创建一个API端点用来接受POST方法提交的数据包,其中包含了待分析的目标对象图片。当接收到新的请求时,程序将读取二进制形式存储于内存缓冲区内的图像内容转换成适合输入给定神经网络的形式;之后再传递至已准备就绪的对象识别引擎完成推理计算工作最后返回JSON格式的结果列表给客户端显示出来[^1]。 ```python @app.route('/predict', methods=['POST']) def predict(): if not request.method == "POST": return if 'file' not in request.files: return "No file part", 400 file = request.files['file'] if file.filename == '': return "No selected file", 400 try: img_bytes = file.read() img = Image.open(io.BytesIO(img_bytes)) results = model([img]) detections = results.pandas().xyxy[0].to_json(orient="records") return jsonify(detections), 200 except Exception as e: return str(e), 500 ``` 启动服务器监听来自外部世界的连接尝试之前还需要设置好环境变量以便让开发者模式下的自动重载机制生效从而加快开发效率。 ```bash export FLASK_ENV=development flask run --host=0.0.0.0 --port=5000 ``` 以上就是关于如何基于Flask框架搭建起一套简单易用的服务端解决方案来进行实时物体分类的任务描述。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值