给定一个 n×m 的二维整数数组,用来表示一个迷宫,数组中只包含 0 或 1,其中 0 表示可以走的路,1 表示不可通过的墙壁。
最初,有一个人位于左上角 (1,1) 处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。
请问,该人从左上角移动至右下角 (n,m) 处,至少需要移动多少次。
数据保证 (1,1) 处和 (n,m) 处的数字为 0,且一定至少存在一条通路。
输入格式
第一行包含两个整数 n 和 m。
接下来 n 行,每行包含 m 个整数(0 或 1),表示完整的二维数组迷宫。
输出格式
输出一个整数,表示从左上角移动至右下角的最少移动次数。
数据范围
1≤n,m≤100
输入样例:
5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
输出样例:
8
对于迷宫的最短路问题,这是最经典的bfs问题,用来解决最短路问题,bfs要用到队列先进先出的思想,一层一层遍历,因此当遍历到终点时,此时所在层数最少,路径最短。
代码实现如下:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int dx[]={-1,0,1,0},dy[]={0,1,0,-1};
typedef pair<int,int> PII;
int n,m;
const int N=110;
int arr[N][N],d[N][N];//d[][]表示该点离起点的距离,走了多少步
int bfs()
{
queue<PII> q;//定义一个队列,队列先进先出
q.push({0,0});
memset(d,-1,sizeof(d));//把d数组初始化为-1,为0则表示已经走过
d[0][0]=0;
while(q.size())//假如队列不为空
{
PII t=q.front();//用一个pair取队列的第一个坐标
q.pop();//清空第一个队列坐标
for(int i=0;i<4;i++)//依次循环判断哪一步能走,能走则放入队列中
{
int x=t.first+dx[i],y=t.second+dy[i];//由于每次x和y都是重新定义的,因此不会受到两步都能走成立的影响
if(x>=0&&x<n&&y>=0&&y<m&&d[x][y]==-1&&arr[x][y]==0)//假如在界内并且未走过且不撞墙
{
d[x][y]=d[t.first][t.second]+1;
q.push({x,y});//入队
}
}
}
return d[n-1][m-1];
}
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++) cin>>arr[i][j];
cout<<bfs()<<endl;
return 0;
}