数据名称:中国家庭金融调查数据(CHFS)数据时间跨度:2011-2019年(共计5期)中国家庭金融调查(China Household Finance Survey, CHFS)是中国家庭金融调

数据名称:中国家庭金融调查数据(CHFS)

数据时间跨度:2011-2019年(共计5期)

中国家庭金融调查(China Household Finance Survey, CHFS)是中国家庭金融调查与研究中心(以下简称“中心”)在全国范围内开展的抽样调查项目,旨在收集有关家庭金融微观层次的相关信息,主要内容包括:人口特征与就业、资产与负债、收入与消费、社会保障与保险以及主观态度等相关信息,对家庭经济、金融行为进行了全面细致刻画。

CHFS基线调查始于2011年,目前已分别在2011、2013、2015、2017和2019年成功实施五轮全国范围内的抽样调查项目,2021年第六轮调查还在进行中。CHFS最新公开的2019年第五轮调查数据,样本覆盖全国29个省(自治区、直辖市),343个区县,1360个村(居)委会,样本规模达34643户,数据具有全国及省级代表性。

在中国,有关家庭金融的研究才刚刚起步,而中心的成果填补了中国家庭金融学术研究和现状的空白,其意义已经超越了学术界,产生了广泛积极的社会效益。在学术方面,中心发布的数据引起了学术界的极大兴趣,并出现了一系列研究成果,随着数据库的深入建设,更多研究人员将参与到家庭金融的研究中来。在社会效益方面,中心积极参与中国重大政策问题的研究与讨论,在房地产市场调控、收入分配与经济转型、城镇化问题等诸多中国目前重大的宏观政策方面都有深入的研究和探索。

 

### 如何将CHFS数据与数字普惠金融指数合并 为了有效地将中国家庭金融调查CHFS数据中国数字普惠金融指数相结合,需遵循一系列严谨的数据处理方法和合并策略。具体操作如下: #### 1. 数据准备阶段 确保两个数据集的时间范围一致非常重要。对于CHFS数据而言,其涵盖了多个度的家庭财务状况记录;而数字普惠金融指数则提供了不同时间段内的地区金融服务水平评估。因此,在开始之前要确认两者覆盖相同的份。 #### 2. 地理位置匹配 由于CHFS是以户为单位采集的信息,而数字普惠金融指数通常是按照行政区划发布的省级或市级层面数值,所以需要依据受访者的居住地将其分配至相应的行政区划内[^1]。这一步骤可以通过提取问卷中的地理位置字段来实现,并利用外部地理编码服务完成精确映射。 #### 3. 时间维度同步化 考虑到两套数据可能存在不同的更新频率以及统计周差异,建议采用插值法或其他适当的方法整时间序列的一致性,使得每一度都能获得对应的数字普惠金融评分[^4]。 #### 4. 关键变量关联 接下来就是确定用于连接这两个大型表格的关键字段。通常情况下,“省份”加上“城市名称”的组合可以作为有效的索引项来进行一对一或多对多的关系建立。此外,还可以考虑引入额外的辅助属性如邮政编码等提高配对精度[^2]。 #### 5. 质量控制措施 在整个过程中实施严格的质量监控机制至关重要。应定审查已配对样本的比例及其分布特征,及时发现并解决潜在偏差问题。同时也要注意保护个人隐私安全,防止敏感信息泄露[^5]。 ```python import pandas as pd # 假设 chfs_df 是 CHFS 的 DataFrame, df_digital_finance 是数字普惠金融指数的 DataFrame merged_data = pd.merge(chfs_df, df_digital_finance[['province', 'year', 'digital_finance_index']], on=['province', 'year'], how='left') ``` 通过上述步骤能够较为全面地整合来自CHFS家庭经济行为模式同各地实际享受到的数字化金融服务程度之间的关系,为进一步深入分析提供坚实基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值