自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 少帅ASCll

【代码】少帅ASCll。

2024-09-30 22:30:45 106 1

原创 SF——Spatial-Frequency Dual Progressive Attention Network For Medical Image Segmentation

SF——Spatial-Frequency Dual Progressive Attention Network For Medical Image Segmentation (SF-UNet:用于医学图像分割的空频双渐进注意力网络)

2024-07-11 16:01:11 1192

原创 《Orthogonal Annotation Benefits Barely-supervised Medical Image Segmentation》论文解读

半监督医学图像分割

2024-05-23 20:22:56 892 1

原创 UNETR训练BTCV中的abdomen数据集

UNETR训练BTCV中的abdomen数据集

2024-03-25 21:12:26 448 4

原创 nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation(解读)

在无需手动调整的情况下,nnU-Net 在 19 项公开国际比赛中超越了最专业的深度学习管道,并在 49 项任务中的大部分任务中创下了新的最先进水平。关键的创新在于将复杂的手动方法配置流程系统化为固定参数、基于数据集属性的规则参数以及最少的经验参数进行优化。nnU-Net通过生成所谓的包含所有相关信息的管道指纹,实现了 生物医学图像分割的深度学习方法的设计。在nnU-Net的开发和评估中使用了23个公开的生物医学图像数据集,包含了广泛的成像模式、目标结构和图像属性。这些规则参数涵盖医学图像分割领域知识。

2023-12-02 14:38:00 2016

原创 UNet后半

UNet的右半部分主要是解码器部分:解码器是编码器的镜像对称结构,用于恢复图像尺寸和通道数,并生成最终的分割结果。它由一系列上采样(一般使用转置卷积)和特征融合操作组成。上采样层用于增加图像尺寸,特征融合操作则将解码器和对应的编码器层之间的特征图进行级联或逐元素相加,以融合不同层次的特征信息。

2023-10-21 10:44:32 106 2

原创 Unet网络介绍——前半

首先输入样例是单通道的,通过一个3*3的卷积核和ReLU操作(步距为1),并且无padding。然后进行下采样,进行最大池化,并使其通道翻倍,再次进行下采样,最大池化,再次使通道翻倍。它包括重复应用两个3x3卷积(未填充卷积),每个卷积后接一个整流线性单元(ReLU)和2x2最大值合并操作,步长2用于下采样。扩展路径中的每个步骤包括特征映射的上采样,随后是将特征通道数量减半的2x2卷积(“上卷积”),与来自收缩路径的相应裁剪特征映射的级联,以及两个3x3卷积,每个卷积后跟一个ReLU。

2023-10-20 21:55:35 213 2

原创 感受野详解

较小的感受野可以捕捉图像中细微的局部特征,而较大的感受野可以捕捉图像中更大范围的全局特征。对于卷积神经网络的设计和理解,理解感受野的概念是很重要的,因为感受野的大小可以影响网络对特定信息的获取能力和处理能力。在网络设计时,我们可以通过适当调整卷积核的尺寸、卷积层的层数以及池化操作的策略等来调节感受野的大小,以获得更好的特征提取和表达能力。例如,在第一层卷积层中,每个神经元的感受野的大小等于卷积核的尺寸。而在后续的层中,每个神经元的感受野的大小会随着网络的深度增加而增大。(可以下去自己试试)。

2023-10-16 19:38:08 159 2

原创 两个经典的神经网络

13个卷积层:每个卷积层都使用了3x3的卷积核,步幅为1,并采用相同的填充方式。这有助于降低网络的参数量,减轻过拟合的问题。- 16个卷积层:同样地,每个卷积层都使用了3x3的卷积核,步幅为1,并采用相同的填充方式。5. 全连接层:AlexNet 在卷积层的顶部使用了多个全连接层,将卷积层提取的特征进行分类和预测。- 3个全连接层:最后的卷积层之后是3个全连接层,负责将卷积层提取的特征进行分类和预测。- 3个全连接层:最后的卷积层之后是3个全连接层,负责将卷积层提取的特征进行分类和预测。

2023-10-16 10:51:59 61 2

原创 整体网络架构

全连接层可以看作是一个矩阵乘法的操作,其中矩阵的每行代表前一层的一个神经元,每列表示后一层的一个神经元。图中可以看出,输入案例很少,首先进行两次卷积操作,是权重参数矩阵数量增多,然后再进行池化操作,使权重参数矩阵数量变少,保留数量特征明显的数据,最后变成一个一维向量,也就是最后的FC操作。最后再进行分类处理。通常情况下,为了降低全连接层所引入的参数数量,减少计算和内存开销,有时候会在全连接层前面加入池化层或者卷积层来减少特征图的尺寸,然后再将其展平(Flatten)成一维向量作为全连接层的输入。

2023-10-15 21:33:19 194 2

原创 池化层原理简介和两个池化操作

MAXPOOLING(最大池化)将输入案例不同区域中,将最大的数值提取出来,重新构建一个权重参数矩阵(如图中的第一块【1,3,2,9】矩阵,提取最大写后面就是把7写在了后面)。为什么要这样呢,因为区域最大值也表示此处特征最明显的,对识别最有用的。平均池化就是把输入案例中不同区域的总和相加在除以块数,最后再写到最后的权重参数矩阵中(如图中第一块矩阵【1,3,2,9】,它就是把矩阵总和相加,然后除以4再写到最后的矩阵中)。

2023-10-15 21:10:38 218 2

原创 卷积神经网络

假设给了一个输入数据(为一个32x32x3的图片),然后把输入数据分成若干小块,从中提取一个5x5x3(图像是一个三维的)特征区域进行卷积特征提取,然后拿一个3x3的权重参数矩阵进行一次卷积操作,后面绿色的矩阵就是每块的数字表示,当前区域的特征值。卷积计算有RGB三层,分别按照上面的计算方法计算后相加,就是最后的特征值,最后再加上误差矩阵即可。

2023-10-13 19:35:43 50

原创 深度学习——前向传播

通俗来说前向传播就就是给出x和W算出最后的loss值。

2023-10-11 19:50:34 74 2

原创 简单的html+CSS+JS搭建电影网页

网页

2023-02-28 21:34:28 1398

原创 python打包项目成为应用程序

python打包项目成应用程序

2023-02-21 19:13:51 311 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除