UNETR训练BTCV中的abdomen数据集

本文介绍了一种利用Transformer技术对体积医学图像进行分割的方法,通过将3Dpatches编码并结合CNN解码器,同时使用线性层和位置嵌入保留空间信息。经过大量训练后,通过图像增强预处理,测试集性能得到了显著提高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文出处:

模型创新点:

用Transformers的能力进行体积医学图像分割 直接利用3D patches的Transformer编码器组成,并通过跳跃连接到一个基于卷积神经网络(CNN)的解码器

编码器创建一个三维输入(h×W×D×C)的一维序列,通过将其划分为flatten的相同大小的非重叠图片块。使用一个线性层将平面化的图片块投影到一个K维嵌入空间中,该空间在整个transformer中保持不变。此外,为了保留所提取的图片块的空间信息,在投影图片块上加入一个一维可学习的位置嵌入,具体的学习位置可见ViT。位置如下

经过4个encoder  5个decoder

跑了5000轮每轮24个批次

预处理上 我在data__untils文件 中加入了图像增强 最后的测试集dic提高了0.03

测试集训练结果:

### 如何处理 BTCV 数据集的标签 BTCV 数据集是一个专门用于多器官分割的任务挑战数据集,其标签包含了多种腹部器官的标注信息。为了有效处理这些标签,在实际应用中通常会遵循以下几种常见方法: #### 1. **理解标签结构** BTCV 数据集中的标签通常是三维数组形式存储,其中每个像素/体素对应一个特定类别的编号。具体类别及其对应的数值可以参考官方文档或相关研究论文[^1]。例如: - 背景 (Background): 值为 `0`。 - 不同器官分别分配唯一的整数 ID。 这些标签可以直接加载并可视化以便确认其分布情况。 #### 2. **预处理标签** 在模型训练之前,可能需要对原始标签进行一些必要的转换操作,比如重映射某些类别或将不需要的部分设置为背景。以下是常见的预处理步骤: - **重新定义类别**: 如果只关注部分器官,则可以通过简单的逻辑运算来过滤掉其他无关类别。例如,假设我们仅关心肝脏和肾脏两类器官,那么可以编写如下 Python 代码实现这一目标: ```python import numpy as np def filter_labels(label_array, target_classes=[1, 2]): """ 将输入 label 数组中的非目标类别设为背景 """ filtered_label = np.zeros_like(label_array) for cls in target_classes: filtered_label[label_array == cls] = cls return filtered_label ``` - **平滑边界**: 对于噪声较多或者边缘模糊的情况,可采用形态学操作(如腐蚀、膨胀)以及高斯滤波等方式改善标签质量[^2]: ```python from scipy.ndimage import gaussian_filter smoothed_label = gaussian_filter(label_array.astype(float), sigma=1).astype(int) ``` #### 3. **增强数据一致性** 当不同扫描设备采集的数据存在差异时,可能会导致同一类型的组织表现不一致。此时可通过标准化手段减少这种影响: - 归一化强度范围至固定区间 `[min_val, max_val]`; - 应用直方图匹配技术使各批次间统计特性更加接近. #### 4. **验证与调试** 完成上述所有准备工作之后,务必仔细检查最终得到的结果是否符合预期。借助工具库 matplotlib 或者 ITK-SNAP 可直观展示图像叠加效果从而判断准确性。 ```python import matplotlib.pyplot as plt def visualize_overlay(image_slice, mask_slice): fig, ax = plt.subplots() ax.imshow(image_slice, cmap='gray', alpha=.7) ax.contour(mask_slice>0, colors=['red'], linewidths=1) plt.show() visualize_overlay(original_image[:, :, slice_idx], processed_mask[:, :, slice_idx]) ``` 通过以上介绍的方法论框架能够较为系统地解决关于如何高效合理地对待来自 BTCV 的 ground truth information 所面临的一系列问题.
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值