🐳🐳🐳爱因斯坦关系式
d n ( x ) d x = n 0 ( x ) q k 0 T d V ( x ) d x \cfrac{dn(x)}{dx}=n_0(x)\cfrac{q}{k_0T}\cfrac{dV(x)}{dx} dxdn(x)=n0(x)k0TqdxdV(x)
∣ E ∣ = − d V ( x ) d x |E|=-\cfrac{dV(x)}{dx} ∣E∣=−dxdV(x)
n 0 ( x ) μ n ∣ E ∣ = − D n d n 0 ( x ) d x n_0(x)\mu_n|E|=-D_n\cfrac{dn_0(x)}{dx} n0(x)μn∣E∣=−Dndxdn0(x)
得, D n μ n = k 0 T q 得,\cfrac{D_n}{\mu_n}=\cfrac{k_0T}{q} 得,μnDn=qk0T
对于空穴, D p μ p = k 0 T q 对于空穴,\cfrac{D_p}{\mu_p}=\cfrac{k_0T}{q} 对于空穴,μpDp=qk0T
爱因斯坦关系式(Einstein relation)是描述半导体或导体中载流子(电子或空穴)的扩散系数( D D D)和迁移率( μ \mu μ)之间关系的物理公式。这个关系式是由阿尔伯特·爱因斯坦在1905年提出的,用于解释布朗运动中的扩散现象。
在半导体物理中,爱因斯坦关系式通常写作:
D μ = k B T q \frac{D}{\mu} = \frac{k_B T}{q} μD=qkBT
其中:
- D D D 是扩散系数,单位是 m 2 / s \text{m}^2/\text{s} m2/s。
- μ \mu μ 是迁移率,单位是 m 2 / ( V ⋅ s ) \text{m}^2/(\text{V}\cdot\text{s}) m2/(V⋅s)。
- k B k_B kB 是玻尔兹曼常数,约等于 1.380649 × 1 0 − 23 J/K 1.380649 \times 10^{-23} \text{ J/K} 1.380649×10−23 J/K。
- T T T 是绝对温度,单位是 K \text{K} K。
- q q q 是载流子电荷量,对于电子来说 q = − e q = -e q=−e,对于空穴来说 q = e q = e q=e,其中 e e e 是电子电荷量,约等于 1.602176634 × 1 0 − 19 C 1.602176634 \times 10^{-19} \text{ C} 1.602176634×10−19 C。
爱因斯坦关系式表明,在热平衡条件下,载流子的扩散系数和迁移率之间有一个简单的关系,这个关系只依赖于温度和载流子电荷量。这个关系式在半导体物理、固体物理和统计物理等领域都有广泛的应用。
在你给出的公式中, n 0 ( x ) n_0(x) n0(x) 是载流子(电子或空穴)的浓度, V ( x ) V(x) V(x) 是电势, E E E 是电场强度。这些公式描述了载流子在电场中的迁移和扩散行为,与爱因斯坦关系式密切相关。其中, μ n \mu_n μn 和 μ p \mu_p μp 分别是电子和空穴的迁移率, D n D_n Dn 和 D p D_p Dp 分别是电子和空穴的扩散系数。