flink, storm, Spark Streaming对比

1.1 Flink

Flink主要用于流处理和批处理,它的设计目标是提供高性能和低延迟的数据处理能力。

在Flink中,所有数据都看做流,是一种很好的抽象。当Flink集群启动后,首先会启动一个JobManager和一个或多个TaskManager.

优点:

  • 支持带有事件时间(event time)的语义的流处理和窗口处理。事件时间的语义使流计算结果更准确,尤其是在事件到达无序或延迟的情况下。
  • 支持高度灵活的窗口(window)操作。
  • 支持轻量的容错处理,既能保持高吞吐率又能保证一致性。
  • 支持高吞吐、低延迟、高性能的流处理。

缺点:

  • 无法正确处理超过最大无序边界的数据。
  • 结果不确定。

1.2 Storm

Storm用于用于实时数据处理,设计目标是提供高吞吐量和低延迟的数据处理能力。

流程:主节点nimbus,从节点supervisor。用户提交作业给nimbus,nimbus把任务分配给supervisor,这些提交的任务就是topology(拓扑),运行的作业分为两种spout和bolt。

优点:Storm是一个免费并开源的分布式实时计算系统。它很简单,可用于任意编程语言。适用于纯实时,不能忍受1s以上延迟的情景下使用;对数据完善精度要求极高,一条也不能多,一条也不能少。适用于不需要在中间执行SQL交互查询、复杂的transformation算子等。

缺点:无法将实时处理出来的数据立即无缝批处理。

1.3 Spark Streaming

Spark Streaming主要用于流处理和批处理,目标是提供灵活性和高性能。

Spark Streaming是一个粗粒度的框架,也就是只能对一批数据指定处理方法,核心是使用微批次(Mcro-batch)架构。根据程序配置的时间,将时间范围内所有数据打成一个RDD,发送给Spark Core处理,如果入水口大于出水口速度,势必造成水管破裂,所以内部会采用背压机制进行处理。

优势:位于Spark生态技术栈,因此Spark Streaming可以和Spark Core、Spark SQL无缝整合。意味着可以对实时处理出来的中间数据立即在程序中无缝进行延迟批处理、交互式查询等操作。

缺点:不是纯实时,是准实时。

FlinkSpark StreamingStorm是三种流处理框架,它们都可以用于实时数据处理。下面是它们的对比分析: 1. Flink Flink是一种新兴的流处理框架,它的特点是高性能、低延迟和高可靠性。Flink的核心是基于流的数据处理,它支持事件时间和处理时间两种时间模型,并且可以处理无限流和有限流。Flink还支持多种数据源和数据格式,包括Kafka、HDFS、Cassandra等。Flink的API非常丰富,支持Java、Scala和Python等多种编程语言,同时还提供了SQL和图处理等高级功能。 2. Spark Streaming Spark Streaming是Apache Spark的一个模块,它可以将实时数据流转换为离线批处理数据。Spark Streaming的核心是基于微批处理的模型,它将实时数据流分成一系列小批次进行处理。Spark Streaming支持多种数据源和数据格式,包括Kafka、Flume、Twitter等。Spark Streaming的API与Spark的API类似,支持Java、Scala和Python等多种编程语言,同时还提供了SQL和机器学习等高级功能。 3. Storm Storm是一种开源的分布式实时计算系统,它的特点是高吞吐量、低延迟和高可靠性。Storm的核心是基于流的数据处理,它支持事件时间和处理时间两种时间模型,并且可以处理无限流和有限流。Storm支持多种数据源和数据格式,包括Kafka、HDFS、Cassandra等。Storm的API相对较为简单,主要支持Java和Clojure两种编程语言,但是它提供了丰富的扩展机制,可以方便地扩展功能。 总体来说,FlinkSpark StreamingStorm都是非常优秀的流处理框架,它们都有自己的特点和优势。Flink的性能和可靠性非常出色,API也非常丰富;Spark Streaming的API与Spark的API类似,可以方便地进行批处理和流处理的转换;Storm的扩展机制非常强大,可以方便地扩展功能。选择哪种框架,需要根据具体的业务需求和技术特点进行选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值