一、直方图与茎叶图
直方图
,用于表示
连续性变量的频数分布,在实际应用中常用于考察变量的分布是否服从某种分布类型,如正态分布。在直方图中以各矩形(直条)的面积表示各组段的频数(或频率),各矩形的面积总和为总频数(或等于1)。若各组段组距不等,则以各组段组距除该组段频数之商为矩形的高度,以该组段的组距为矩形的宽度,以保证矩形的面积等于该组的频数。
看个栗子
1)选择
"图形”
→“图表构建器
"菜单项,打开"图表构建器"对话框
直方图组的绘制
选择"组 /点ID",选择行面积变量,放入对比元素即可
分段直方图
面积图
茎叶图
分析->
描述统计->
探索过程实现
二、箱图
三、饼图
条形图设置降序
在"排序依据“下拉列表框
选择"统计”
选项,在 “
方向”
拉列
表框 选择"降序"选项 ,单
击"应用'按钮
四、百分条图
五、多重线图
线不够丝滑,设置一下
六、散点图
七、P-P图和Q-Q图
在"分析”-->
"描述统计"菜单

如果数据服从
正态分布.则其
中的数据
应和理论直线(对角线)基本重合
可见
ind
ex1
的实际分布和理论 分布基本接近。 为了进行更仔细的观察
可以继续观察右侧的去势
p-p
图,该图反映的是按
正态分布计算的理论值和实际值之量的分布情况,即分布的残差图。
如果数据服从正态分
布,则数据点应较均匀地
分布在
y= 0
这条直线上下 ,可能
可见残差虽然有 一
定的 上下波动,但绝对差异均小于 0.05
,这在绝大多数研究中都是可以想略的分布概率差异。
不符合正态分布的例子:
P-P图比较的是两者的累计概率分布 而Q-Q图
则是
根据变量的实际百分位
数与理论百分位数进行绘制的
或者说得更通俗一
点,相比之下
Q-Q 图
的适用条件更宽松,结果也更稳健一些。
八、控制图
"分析'→"质量控制“

九、Pareto图
总结
本章主要针对SPSS常用统计图
主要解决问题:
1)使用SPSS完成对常用统计图的表示