统计分析利器:深入解读卡方检验与单因素方差分析的应用案例【练习题】

一、卡方检验

1.对400人进行问卷调查,询问对于教学改革的看法,调查结果如下表所示,请问不同学科不同性别的人意见是否相同。

学科

男生

女生

工科

80

40

理科

120

160

(性别,学科均无序分类=>卡方检验)(频数->加权个案)

1. 数据输入

首先,将数据输入到SPSS中。数据表格如下:

学科性别人数
工科男生80
工科女生40
理科男生120
理科女生160

2. 数据录入SPSS

  1. 打开SPSS。
  2. 在数据视图中,输入变量名:学科性别人数
  3. 输入上表中的数据。

3. 变量定义

在变量视图中,定义每个变量的属性:

  • 学科性别设为数值,定义好值。
  • 人数设为数值(Numeric)。

4. 进行卡方检验

  1. 在菜单栏中选择分析(Analyze)。

  2. 选择描述统计(Descriptive Statistics),然后选择交叉表(Crosstabs)。

  3. 在弹出的对话框中:

    • 学科拖到(Row(s))区域。
    • 性别拖到(Column(s))区域。
    • 人数拖到(Layer 1 of 1)区域。

4.点击右下角的统计量(Statistics)按钮,勾选卡方(Chi-square),然后点击继续。

5.点击右下角的单元格(Cells)按钮,勾选观测值(Observed)和期望值(Expected),然后点击继续(Continue)。

6.点击确定(OK),SPSS将会生成结果。

5. 结果解释

结果会显示在输出窗口中,主要关注以下几点:

  • 卡方检验表格:

    • 查看Pearson 卡方显著性(Asymp. Sig. (2-sided))值(即p值)。
    • 如果p值小于0.05,则认为不同学科和性别的学生对教学改革的看法存在显著差异。

  • 交叉表(Crosstabulation)表格:

    • 查看观测频数(Observed N)和期望频数(Expected N)的差异。

6. 具体结果解释

1. 样本数和有效个案数

在数据中,我们看到不同样本数(40, 80, 120, 160和400)的情况下,对皮尔逊卡方统计量进行了分析。所有样本的有效个案数为400。

2. 皮尔逊卡方统计量

总计部分的皮尔逊卡方统计量为19.048,自由度为1,渐进显著性(双侧)为.000。这意味着在这些数据中,我们有非常强的证据拒绝原假设(即变量是独立的),认为变量之间有显著关系。皮尔逊卡方值为19.048,且其显著性水平(p值)为.000,这表明结果在统计上显著。

3. 连续性修正

连续性修正是专门为2x2表格计算的修正统计量。在本例中,连续性修正的卡方统计量为18.107,自由度为1,显著性水平为.000。这进一步支持了皮尔逊卡方的结论,表明变量之间存在显著关系。

4. 似然比

似然比检验是一种与卡方检验类似的检验方法,但它基于最大似然估计。在这组数据中,似然比为19.326,自由度为1,显著性水平为.000。这同样表明了变量之间存在显著关系。

5. 费希尔精确检验

费希尔精确检验是一种非参数检验,特别适用于小样本数据。在这里,费希尔精确检验的显著性(双侧和单侧)均为.000,进一步确认了变量之间的显著关系。

6. 线性关联

线性关联检验值为19.000,自由度为1,显著性水平为.000。这也是对变量间显著关系的有力支持。

  1. 皮尔逊卡方检验、连续性修正、似然比检验、费希尔精确检验和线性关联检验均表明变量之间存在显著关系。
  2. 所有检验的显著性水平均为.000,意味着结果非常显著。
  3. 数据满足卡方检验的基本要求(期望计数大于5)

二、单因素方差分析

某公司想比较五种销售方法有无显著的效果差异,从应聘人员中随机挑选分为为五组,每组用一种推销方法培训。一段时期后得到各组销售额如下表所示:(有五组,每组为连续性变量=>单因素方差分析)

(1)分析这五种推销方式是否存在显著差异。

(2)绘制相关均值图,并说明利用合适的方法进行多重比较检验,说明那组推销方式最好?

(1)分析五种推销方式是否存在显著差异

数据输入

步骤1:输入数据

  1. 打开SPSS软件。
  2. 在“数据视图”中,手动输入数据。数据格式应该有两列:一列表示组别(可以用1到5表示),一列表示销售额。
组别销售额
120.0
116.8
117.9
121.2
123.9
126.8
122.4
224.9
221.3
222.6
230.2
229.9
222.5
220.7
316.0
320.1
317.3
320.9
322.0
326.8
320.8
417.5
418.2
420.2
417.7
419.1
418.4
416.5
525.2
526.2
526.9
529.3
530.4
529.7
528.3

单因素方差分析

步骤2:执行单因素方差分析

  1. 选择菜单栏中的 分析
  2. 选择 比较均值,然后选择 单因素方差分析
  3. 将“销售额”变量拖到 因变量列表 中。
  4. 将“组别”变量拖到 因子 框中。
  5. 点击 选项 按钮,勾选 描述方差齐性检验,然后点击 继续
  6. 点击 事后 按钮,选择LSD 和 塔姆黑尼,然后点击 继续
  7. 点击 确定 运行分析。

结果解释

运行ANOVA后,您将得到以下几个重要结果:

  1. 描述性统计:显示每组的样本数、均值、标准差等信息。
  2. 方差齐性检验:Levene检验结果,用于检验各组方差是否相等。
  3. 方差分析表
    • 组间:表示各组均值的差异。
    • 组内:表示组内数据的变异。
    • F 值和 Sig.(p值):用于判断是否存在显著差异。

如果 Sig.(p值)小于显著性水平(通常为0.05),则拒绝原假设,认为至少有两组的均值存在显著差异。

(2)绘制相关均值图,并进行多重比较检验

绘制相关均值图

多重比较检验

在进行ANOVA分析时,我们已经选择了LSD 和塔姆黑尼 方法进行事后检验。检验将比较每一对组别之间的均值差异,并给出显著性水平。

步骤4:查看多重比较检验结果

  1. 在ANOVA结果窗口中,找到 多重比较 表格。
  2. 查看每对组别之间的比较结果,特别关注 Sig.(p值)。如果 p值小于0.05,则表明这对组别之间的均值差异显著。

解释哪组推销方式最好

多重比较的结果包括LSD(最小显著差异检验)和塔姆黑尼(Tamhane's T2)检验。以下是对这些结果的详细解释:

LSD检验结果

LSD检验比较了每对组之间的均值差异,并指出哪些差异是显著的(显著性水平为0.05)。结果显示如下:

  • 第一组 vs 第二组:均值差异为-3.3000,显著性为0.047。这表明第一组的平均销售额显著低于第二组。
  • 第一组 vs 第五组:均值差异为-6.7143,显著性为0.000。这表明第一组的平均销售额显著低于第五组。
  • 第二组 vs 第三组:均值差异为4.0571,显著性为0.016。这表明第二组的平均销售额显著高于第三组。
  • 第二组 vs 第四组:均值差异为6.3429,显著性为0.000。这表明第二组的平均销售额显著高于第四组。
  • 第二组 vs 第五组:均值差异为-3.4143,显著性为0.041。这表明第二组的平均销售额显著低于第五组。
  • 第三组 vs 第五组:均值差异为-7.4714,显著性为0.000。这表明第三组的平均销售额显著低于第五组。
  • 第四组 vs 第五组:均值差异为-9.7571,显著性为0.000。这表明第四组的平均销售额显著低于第五组。
塔姆黑尼检验结果

塔姆黑尼检验结果用于当组间方差不等时的多重比较。结果如下:

  • 第一组 vs 第五组:均值差异为-6.7143,显著性为0.014。这表明第一组的平均销售额显著低于第五组。
  • 第二组 vs 第四组:均值差异为6.3429,显著性为0.046。这表明第二组的平均销售额显著高于第四组。
  • 第三组 vs 第五组:均值差异为-7.4714,显著性为0.006。这表明第三组的平均销售额显著低于第五组。
  • 第四组 vs 第五组:均值差异为-9.7571,显著性为0.000。这表明第四组的平均销售额显著低于第五组。

哪组推销方式最好

根据均值差异和显著性检验结果,我们可以得出以下结论:

  1. 第五组的推销方式最好:因为第五组的平均销售额显著高于其他所有组。在LSD和塔姆黑尼检验中,所有与第五组的比较中,均显示其销售额显著高于其他组。

  2. 第二组的推销方式次之:在LSD检验中,第二组的平均销售额显著高于第一组、第三组和第四组,且在塔姆黑尼检验中,第二组的销售额显著高于第四组。

具体分析

  • 第一组:相对较差,销售额显著低于第二组和第五组。
  • 第二组:表现较好,销售额显著高于第一组、第三组和第四组,但低于第五组。
  • 第三组:销售额显著低于第二组和第五组。
  • 第四组:销售额显著低于第二组和第五组。
  • 第五组:表现最佳,销售额显著高于所有其他组。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Five.(ง •̀_•́)ง

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值