知识库的关联

融合建模

多源、多维、多层次数据的融合建模是后续分析技术的核心基础。本节将重点介绍融合建模中的关 键技术趋势⸺ 超融合知识图谱。

超融合知识图谱

4.1.1.1 定义内涵

超融合知识图谱的含义是以安全领域知识图谱为核心,面向网络环境数据、威胁行为数据、威胁情 报数据、安全知识库
等,构建本体化、标准化、全局化的知识结构,支持安全数据的动态查询与聚合分 析,升安全数据运营分析的整体性。超融合知识图谱是后续风险感知、因果认知、鲁邦决策、可靠行 动多层次技术能力实现的核心技术基础。没有统一的数据视图支撑,高复杂度算法的构建将是空中楼阁。
4.1.1.2 技术背景

网络环境本身具有典型的图结构,网络安全问题也因此很自然地与图数据结构、图算法结合起来。 在 Google 出知识图谱的概念之后,以知识图谱技术为基础的智能应用方案,已经在推荐系统、问答 系统、搜索引擎、社交网络、风控等领域广为使用。在安全领域,最常见的就是各大安全产品中的可视 化界面中资产关系图、攻击向量图等。通过图进行数据关联和推理,国内外
厂商也在不断地进行深入的 尝试。依赖于语义图的内在可解释性,图结构及图算法广泛的应用在诸多场景下,如推荐系统、欺诈检测、 网络安全等,为自然存在的大规模数据关系的挖掘提供了系统性的可解释的方法,成为 XAI(eXplainable AI)技术的重要组成部分。此外,针对图算法的研究,如基于深度学习的图嵌入、图遍历、图上异常检 测等,增强其可解释性也是重要的研究方向。
4.1.1.3 思路方案

微 软 的 智 能 安 全 图(Microsoft Intelligent Security Graph) 已 几 乎 全 面 占 领 了 Google 引 擎 “Graph”+“Security”关键词的搜索结果。其通过云生态和平台全面融合,链接多方多维数据,供 全面的威胁关联信息,并以云端的分析能力保证实时的威胁检测,此外还供了可快速集成的 API。 在 2019 年 RSAC大会上,微软安全团队介绍了数据重力ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值