AC代码:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<set>
#define endl '\n'
//#define int long long
using namespace std;
typedef long long ll;
const int N=110;
int a[N];
int n;
void solve()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
int x=1;
for(int i=2;i<=n;i++){
if(a[i]>=a[x]) x=i;
}
if(x==1) cout<<0<<endl;
else cout<<a[x]+1-a[1]<<endl;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t=1;
// cin>>t;
while(t--) {
solve();
}
return 0;
}
B - Who is Saikyo? (atcoder.jp)
想到拓扑排序,但只要记录入度就行,不需要排序
AC代码:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#define endl '\n'
//#define int long long
using namespace std;
typedef long long ll;
const int N=100;
int d[N];
int n,m;
void solve() {
cin>>n>>m;
for(int i=1;i<=m;i++){
int u,v;
cin>>u>>v;
d[v]++;
}
vector<int>ans;
for(int i=1;i<=n;i++){
if(d[i]==0) ans.push_back(i);
}
if(ans.size()!=1) cout<<-1<<endl;
else {
for(auto v:ans) cout<<v<<endl;
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t=1;
// cin>>t;
while(t--) {
solve();
}
return 0;
}
C - Approximate Equalization 2 (atcoder.jp)
一开始想的是将任意两个数分解成x和x+1,要使得次数最小,那么要让x尽量平均,于是让最大的数和最小的数分解,次大的数和次小的数分解...
但是这样完全想错了,比如说一个数超级大,其它数超级小,那么其它数都得和那个最大的数进行配对
我们可以发现,每次操作都是一个数加1,另一个数减1,那么当所有操作结束后,总和还是不变,为sum,然后我们最后统一要变成一堆x以及一堆x+1,由于x*n
设共cnt个x,则(n-cnt)个x+1,所以cnt*x+(n-cnt)*(x+1)=sum,得cnt=n*x+n-sum
然后肯定是小的数变成x,大的数变成x+1,这样次数才最少,最后算出的差值之和是操作次数的两倍,因为每次操作的差值都是2(加1和减1)
注意,它并不是两两对称配对的,所以不能只算前一半的数
AC代码:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#define endl '\n'
//#define int long long
using namespace std;
typedef long long ll;
const int N=2e5+10;
int a[N];
int n;
void solve() {
cin>>n;
ll sum=0;
for(int i=1; i<=n; i++) {
cin>>a[i];
sum+=a[i];
}
sort(a+1,a+1+n);
int x=sum/n;
ll res=0;
int cnt=n*x+n-sum;
for(int i=1;i<=cnt;i++) res+=abs(a[i]-x);
for(int i=cnt+1;i<=n;i++) res+=abs(a[i]-(x+1));
cout<<res/2<<endl;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t=1;
// cin>>t;
while(t--) {
solve();
}
return 0;
}