一、背景与目标
上次会议,小组围绕“汉语学习”的功能需求展开讨论。需求文档明确了核心功能(卡片学习、情景对话等)和辅助模块(积分、排行榜),但如何将抽象需求转化为可落地的设计方案,并合理分配开发任务,成为团队的首要挑战。
目标:
-
设计符合目前主流语言学习网站风格的用户界面,提升学习趣味性。
-
明确前后端协作边界,确保技术方案可扩展。
-
制定开发优先级,优先交付核心功能MVP(最小可行产品)。
二、核心功能设计讨论
1. 卡片学习:如何平衡趣味性与学习效率?
-
前端主张:
-
参考主流网站的闯关模式,设计卡片翻转动效和错误抖动反馈。
-
-
后端疑虑:
-
动态生成题目需考虑词库分级逻辑(如初级用户避免高级词汇)。
-
错题归集功能依赖高效的数据查询(如按错误率排序)。
-
-
达成共识:
-
使用Redis缓存高频词库,前端通过
/api/get-card
接口按难度拉取题目。 -
错题记录表增加
error_count
字段,方便后续生成复习计划。
-
2. 情景对话:如何实现低延迟的AI交互?
-
技术难点:
-
AI回复延迟影响用户体验,需优化模型响应速度。
-
中英双语切换需保证上下文连贯性。
-
-
解决方案:
-
后端:采用WebSocket长连接,预加载常见情景的语料库,减少API调用耗时。
-
前端:设计“假性实时”效果——用户发送消息后,立即展示“AI正在输入”的动画,掩盖加载延迟。
-
数据协议示例:
// WebSocket消息格式 { "type": "user_message", "content": "I want to book a flight", "lang": "en", "scene": "airport" }
-
3. 书写纠正:如何精准识别笔顺错误?
-
算法组建议:
-
使用LSTM网络分析笔画时序数据,结合OCR识别结果对比标准字形。
-
建立常见错误库(如“横笔过长”“撇捺角度偏差”),针对性生成提示。
-
-
前端配合:
-
提供手写板Canvas画布,捕获坐标数据并实时传输至后端。
-
实现动态笔顺演示动画,用红色箭头高亮错误步骤。
-
三、技术分工与协作实践
1. 前后端协作边界
模块 | 前端职责 | 后端职责 |
---|---|---|
情景对话 | 实现聊天界面动效、语音输入适配 | 对接DeepSeek API、维护WebSocket连接 |
识图搜词 | 相机取景框优化、图片压缩(<300KB) | 调用YOLO模型识别物体、关联词汇数据库 |
积分系统 | 实时显示积分变动动画 | Redis事务管理、防刷分逻辑(如每日上限) |
2. 关键接口定义(部分示例)
-
卡片学习题目获取
GET /api/cards 参数:{ level: "beginner", category: "food" } 响应:{ id: 101, image_url: "https://xxx/apple.jpg", options: ["apple", "banana", "car", "dog"], correct_index: 0 }
3. 开发优先级与风险管理
-
优先级排序:
1.核心功能:卡片学习 + 情景对话(确保MVP可用性)。
2.辅助功能:积分系统 + 每日任务(提升用户留存)。
3.扩展功能:排行榜 + 皮肤商店(增强社交属性)。
-
风险应对:
-
AI服务延迟:准备降级方案(如本地缓存常见对话模板)。
-
高并发压力:使用Nginx负载均衡,数据库读写分离。
-
四、总结与反思
本次讨论明确了三个关键原则:
-
用户体验优先:通过动效和即时反馈降低学习枯燥感。
-
技术为业务服务:AI模型的选择以“够用”为准则,避免过度复杂化。
-
敏捷协作:每日会同步进度,实时维护API文档。
下一步计划:
-
前端完成主界面原型设计,后端搭建基础服务框架。
-
组织后续会议,确保接口设计符合双方预期。
通过这次小组讨论,我们不仅拆解了功能需求,更在技术分工与协作流程上达成一致。当然,完美的方案还需尽快落地。