1、平方差
考虑将公式化简,然后看x是由什么性质的数组成,该题中,从x奇偶性质入手,判断x可能的组成情况。
2、完全平方数
P8754 [蓝桥杯 2021 省 AB2] 完全平方数 题解 - 洛谷专栏
解题关键:
1)唯一分解定理,对于任意一个数 n,它都可以分解为若干个质数的乘积
2)质因数分解,将一个数分解为若干个质数的乘积
// n是被分解的数
for(ll i=2;i*i<=n;i++){
if(n%i==0) cnt++;
while(n%i==0){
p[cnt]=i;//p是质因子
g[cnt]++;//g是这个质因子的指数
n/=i;
}
}
if(n>1){
p[++cnt]=n;
g[cnt]++;
}
3、杨辉三角
性质1:杨辉三角中的任何数都可以用层数和对角线数的组合数来表示
性质2:杨辉三角中对角线开头的元素(杨辉三角每层最中间的元素)均比对角线后面的元素小
思路:去找第一个小于n的对角线开头元素,在这条对角线上找利用二分来找n,由于对角线已确定,只需要去二分层数
4、裴蜀定理
P8646 [蓝桥杯 2017 省 AB] 包子凑数 题解 - 洛谷专栏
5、埃氏筛
把范围n内的素数(质数)筛选出来:从2开始,将每个质数的倍数都标记成合数,直至遍历到n
for(int i=2;i<=N;i++){
if(!isprime[i]){
for(int j=i*i;j<=N;j+=i){
isprime[j]=1;
}
}
}
// 最终isprime为0的数为素数
该算法思想还可用于求数组中所有存在的倍数,相关题目: [蓝桥杯 2022 国 B] 齿轮 - 洛谷
// vis[]=1表示数组中存在的元素
for(int i = 1; i <= MAX; i++){
if(vis[i]){
for(int j = 2*i; j <= MAX; j += i){
if(vis[j]) ans[j/i] = 1;
}
}
}
6、费马小定理
若 是质数,设整数 ,则有
≡ (mod )。
7、gcd & gbs
求最大公约数
int gcd(int a, int b){
if(a < b){
int tmp = a;
a = b;
b = tmp;
}
if(b == 0) return a;
else return gcd(b, a%b);
}
求最小公倍数
int gbs(int a, int b){
return a*b/gcd(a,b);
}
8、组合数
如果题目需要用到组合数,若知道组合数a的范围,则可以根据这个公式预处理出全部的组合数。
for(int i = 0; i < N; ++i){
for(int j = 0; j <= i; ++j){
if(!j || !i) c[i][j] = 1;
else c[i][j] = c[i-1][j-1] + c[i-1][j];
}
}
或者用函数计算
int C(int b, int a) // 计算组合(b在上面,a在下面)
{
int sum = 1;
for (int i = a, j = 1; j <= b; i--, j++)
sum = sum * i / j;
return sum;
}