数学算法笔记

1、平方差

[蓝桥杯 2023 省 A] 平方差 - 洛谷

考虑将公式化简,然后看x是由什么性质的数组成,该题中,从x奇偶性质入手,判断x可能的组成情况。

题解:Welcome - Luogu Spilopelia

2、完全平方数

[蓝桥杯 2021 省 AB2] 完全平方数 - 洛谷

P8754 [蓝桥杯 2021 省 AB2] 完全平方数 题解 - 洛谷专栏

解题关键:

1)唯一分解定理,对于任意一个数 n,它都可以分解为若干个质数的乘积

2)质因数分解,将一个数分解为若干个质数的乘积

	// n是被分解的数
    for(ll i=2;i*i<=n;i++){
		if(n%i==0) cnt++;
		while(n%i==0){
			p[cnt]=i;//p是质因子
			g[cnt]++;//g是这个质因子的指数
			n/=i;
		}
	}
	if(n>1){
		p[++cnt]=n;
		g[cnt]++;
	}

3、杨辉三角

[蓝桥杯 2021 省 B] 杨辉三角形 - 洛谷

题解:P8749(杨辉三角) - Luogu Column

性质1:杨辉三角中的任何数都可以用层数和对角线数的组合数来表示

性质2:杨辉三角中对角线开头的元素(杨辉三角每层最中间的元素)均比对角线后面的元素小

思路:去找第一个小于n的对角线开头元素,在这条对角线上找利用二分来找n,由于对角线已确定,只需要去二分层数

4、裴蜀定理

[蓝桥杯 2017 省 AB] 包子凑数 - 洛谷

P8646 [蓝桥杯 2017 省 AB] 包子凑数 题解 - 洛谷专栏

5、埃氏筛

把范围n内的素数(质数)筛选出来:从2开始,将每个质数的倍数都标记成合数,直至遍历到n

for(int i=2;i<=N;i++){
    if(!isprime[i]){     
        for(int j=i*i;j<=N;j+=i){
            isprime[j]=1;
        }
    }
}
// 最终isprime为0的数为素数

该算法思想还可用于求数组中所有存在的倍数\frac{a_{i}}{a_{j}},相关题目: [蓝桥杯 2022 国 B] 齿轮 - 洛谷

	// vis[]=1表示数组中存在的元素
    for(int i = 1; i <= MAX; i++){
		if(vis[i]){ 
			for(int j = 2*i; j <= MAX; j += i){
				if(vis[j]) ans[j/i] = 1;
			}
		}
	}

6、费马小定理

p是质数,设整数 a,则有 {a}^{p}  a (mod p)。

7、gcd & gbs

求最大公约数

int gcd(int a, int b){
	if(a < b){
		int tmp = a;
		a = b;
		b = tmp;
	}
	if(b == 0) return a;
	else return gcd(b, a%b);
}

求最小公倍数

int gbs(int a, int b){
	return a*b/gcd(a,b);
}

8、组合数

如果题目需要用到组合数,若知道组合数a的范围,则可以根据这个公式C_{a}^{b} = C_{a-1}^{b-1} + C_{a-1}^{b}预处理出全部的组合数。

for(int i = 0; i < N; ++i){
	for(int j = 0; j <= i; ++j){
		if(!j || !i) c[i][j] = 1;
		else c[i][j] = c[i-1][j-1] + c[i-1][j];
	}
}

或者用函数计算

int C(int b, int a) // 计算组合(b在上面,a在下面)
{
    int sum = 1;
    for (int i = a, j = 1; j <= b; i--, j++)
        sum = sum * i / j;
    return sum;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值