【MoodVine】基于AIGC生成与多模态交互的动态可视化情绪疗愈系统 项目实施计划

一、项目背景

1.1 研究背景

(一)社会心理健康危机加剧,情绪管理需求爆发

当代社会正深陷“情绪赤字”的全球性困境,高压生活模式催生出普遍的心理亚健康状态。中国超3亿人存在睡眠障碍,全球抑郁症患者年增长率达18%,焦虑症患者中“隐形病患”占比超过60%,折射出情绪问题已从隐性痛点演变为显性社会危机。在职场内卷加剧、代际沟通断层、社交关系虚拟化的多重夹击下,传统情绪疏导机制逐渐失效——76.2%的受访者坦言无法向亲友有效表达负面情绪,而专业心理咨询服务覆盖率不足需求量的15%,形成巨大的“情感支持真空”。更值得关注的是,Z世代群体中“情绪躯体化”现象愈发显著,皮肤敏感、肠胃紊乱等身心关联病症搜索量三年暴涨480%,揭示出未被满足的情绪管理需求正在转化为实质性的健康威胁。

  • 情绪疗愈经济崛起,供需失衡催生创新机遇

情绪健康赛道已成为全球增长最快的领域之一,预计2025年中国市场规模将突破千亿,但结构性矛盾日益凸显:传统心理咨询受限于供给端的人力缺口与价格门槛,仅能覆盖不足3%的需求;而泛滥的“伪科学”减压应用因缺乏专业性与持续性,用户留存率不足20%。这种供需错位催生出全新的市场机遇——年轻群体对“数字疗愈”的接受度较五年前提升57%,他们既需要符合临床心理学逻辑的专业支持,又渴望保留自主掌控感与趣味交互体验。资本市场的反应印证了这一趋势:2023年情绪科技领域融资额同比增长212%,其中融合AIGC技术与行为心理学的解决方案最受青睐,反映出市场对“有温度的科技”的迫切期待。

  • 政策与技术双轮驱动,重塑心理健康服务范式

国家“十四五”心理健康促进行动明确将数字化干预纳入公共服务体系,上海、深圳等地率先试点“城市情绪驿站”项目,推动心理健康服务从医疗机构向社区、校园渗透。与此同时,生成式AI、多模态感知、情感计算三大技术突破形成合力:语音情感识别模型在中文场景准确率达89.7%,微表情分析系统可捕捉52种面部情绪信号,AIGC技术则让个性化心理辅导内容生成成本下降90%。政策引导与技术进步的双重加持,使得心理健康服务突破时空与资源限制,从“精英化服务”转向“普惠式基建”,为构建全民情绪健康网络奠定基础。

  • 行业趋势:从碎片化工具到生态化服务

情绪健康产业正在经历价值链条的重构,单一功能型产品逐渐被整合式生态平台取代。用户需求呈现三大跃迁:从即时情绪纾解转向全生命周期管理,期望建立涵盖“感知-记录-分析-干预”的情感数据闭环;从通用化方案升级为动态个性化服务,要求系统能基于连续情绪曲线预测压力临界点并提供预防性指导;从孤立使用进化为社群共愈体验,超70%用户希望在私密疗愈与轻社交互动间找到平衡。这种演变推动行业向“技术+内容+社区”三维生态演进,具备情感陪伴、认知重塑、价值共创能力的平台将主导下一代心理健康服务市场格局。

1.2 竞品分析

详细竞品分析见附件1

 二、项目内容

 2.1 用户系统

用户系统是本数据标注平台的基石,负责处理用户的注册、登录、角色分配、权限管理及个人信息维护等功能。用户系统应兼具可用性和安全性。

​​​​​​​2.1.1 系统角色定义

系统管理员:有用户管理权限、可以发布主题周活动、查看全局统计信息

用户:可以体验小程序的全部功能,包括聊愈、记愈、参与主题周打卡、性格测试等

​​​​​​​2.1.2 用户端功能

注册与登录:新用户登录时微信平台会进行权限申请,获取个人用户身份。注册后,用户可以登录平台,开始情绪疗愈之旅。

个人资料管理:用户可以编辑个人信息,如头像、密码等。

多模态交互(聊愈):支持语音输入(实时转文字)、文本对话、图片上传(解析画面情绪)。获得情感化对话建议,对话结束后生成治愈纸条与情绪波动曲线。

日记记录(记愈):支持图片+文字形式,提供10+种治愈系信纸模板。

智能标签生成:每日自动生成情绪标签(如「午后焦虑」「深夜灵感」),根据聊愈和记愈的情况形成个人情绪日历。

蜜罐值系统:通过完成聊愈/记愈/打卡任务积攒积分,解锁限定罐子皮肤或兑换日记信纸。

周报与成长反馈:每周日将依据用户本周疗愈情况,自动生成包含情绪分析、对话金句、成长建议的定制海报。

主题周活动:加入「七日正念挑战」「早餐周」等主题打卡,完成指定任务获得积分等

数据可视化看板:以日历形式呈现用户每日心情,在每次聊愈记录中能查看情绪波动曲线图

​​​​​​​2.1.3 管理员端功能

用户管理:管理用户账户,包括用户数据统计等。

活动发布与管理:管理主题周活动的生命周期,包括活动创建、持续时间设置等

三、总体架构

3.1 项目架构

 3.2 用户小程序架构

 

3.3 项目部署架构

四、关键技术 

4.1 前端关键技术

4.1.1 核心框架:React

React是一个用于构建用户界面的JavaScript库。它采用组件化的开发模式,允许开发者将界面拆分成可复用的组件,从而高效地构建和管理复杂的用户界面。

4.1.2 状态管理:Redux

Redux是一个专为JavaScript应用设计的状态管理库,尤其适用于React应用。它提供了一个可预测的状态容器,用于在整个应用中存储和管理状态。Redux通过action和reducer来更新状态,使得状态变化更加可控和可追踪。

4.1.3 路由管理:React Router

React Router是一个用于React应用的路由管理库。它提供了声明式的路由配置方式,允许开发者轻松定义应用的页面结构和导航逻辑。React Router使得在React应用中实现客户端路由变得简单而直观。

4.1.4 UI组件库:Taro UI

Taro UI支持在微信小程序、H5、React Native、支付宝小程序、百度小程序等多端环境中运行,提供丰富的基础组件,如按钮、输入框、轮播图、导航栏等,能够帮助开发者快速构建出美观且一致的界面。

4.1.5 构建工具:Vite

Vite是一个新型的前端构建工具,特别适用于现代Web开发。它提供了极快的冷启动、即时热模块更新和丰富的插件生态系统。Vite通过原生ESM导入来提供开发服务器和生产构建,从而大大提高了React应用的加载速度和性能。

4.1.6 其它工具:ESLint

ESLint是一个静态代码分析工具,用于识别和报告JavaScript代码中的模式。ESLint通过配置规则来强制执行代码风格和质量标准,从而提高代码的可维护性和团队协作效率。在React项目中,使用ESLint可以确保代码遵循最佳实践,减少潜在错误,并提高开发效率。

4.2 后端关键技术 

4.2.1  核心框架: springboot

Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化Spring应用的创建、运行、调试、部署等。使用Spring Boot可以做到专注于Spring应用的开发,而无需过多关注XML的配置。Spring Boot使用“习惯优于配置”的理念,简单来说,它提供了一堆依赖打包,并已经按照使用习惯解决了依赖问题。Spring Boot 提供了高度的模块化和扩展性,能够根据项目需求选择不同的功能模块,而无需进行复杂的配置和集成。同时,Spring Boot 与 Spring Cloud 和 Spring Security 等其他框架的兼容性也很好,便于功能拓展和安全控制。

4.2.2  网关层

在设计网关层时,要考虑以下几个方面:

  1. 高性能与可扩展性:使用异步非阻塞的技术,支持负载均衡和动态扩展,满足高并发需求
  2. 安全性:提供认证和授权机制
  3. 灵活性与可配置性:支持灵活的路由规则,能够动态更新配置;支持插件机制,方便扩展新功能
  4. 简化客户端开发:将复杂的服务调用逻辑封装在网关层,提供简化的接口;实现聚合API,减少客户端的多次请求

下面为可选的技术方案:

Ngnix:一个高性能的HTTP和反向代理服务器。Nginx一方面可以做反向代理,另外一方面可以做静态资源服务器,接口使用Lua动态语言可以完成灵活的定制功能。并且Nginx采用异步非阻塞方式来处理请求,这样的机制使得Nginx能够轻松应对百万级的并发请求。

Spring Cloud Gateway:一个基于 Spring Framework 的开源网关服务,用于构建微服务架构中的 API 网关。它提供了一种灵活的方式来路由请求、过滤请求以及对请求进行各种操作,从而实现对微服务的集中控制、安全性、监控等功能。

4.2.3  持久化层

持久化层要考虑的问题包括:

  1. 数据存储逻辑的分离,提供抽象化的数据访问接口
  2. 数据访问底层实现的分离,可以在不修改代码的情况下切换底层实现
  3. 资源管理和调度的分离,在数据访问层实现统一的资源调度(如缓存机制)
  4. 数据抽象,提供更面向对象的数据操作

Redis 是一个高性能的键值存储数据库,广泛用于缓存和会话管理。它的读写速度非常快,且支持丰富的数据结构,非常适合处理频繁访问的非结构化数据。通过将热数据缓存到 Redis 中,系统能够大幅减少对数据库的访问频次,提升系统的响应速度和并发处理能力。

阿里云 OSS(对象存储服务)OSS 是阿里云提供的一种云存储服务,具有高可用、低成本、扩展性强等特点,非常适合存储图片、视频和其他静态文件。通过 OSS 提供的高效上传和下载接口,用户能够快速地访问和下载文件。同时,OSS 还支持自动的负载均衡和容灾备份,确保数据的安全性和可用性

MySQL:MySQL作为关系型数据库管理系统,提供了数据持久化、复杂查询、事务管理和数据安全等几个方面的功能,具有高可靠性、高性能、简单易用、可扩展性等多方面的优点。

4.3  基于数据集微调DeepSeek的聊愈对话生成

为实现用户与AI小助手的自然对话功能,本项目计划采用DeepSeek作为基础模型,并通过微调使其适应情绪疗愈场景。DeepSeek是一种基于Transformer架构的预训练语言模型,具有强大的文本生成和理解能力。通过微调,我们能够使其在情绪疗愈场景中生成温柔、口语化且具有情感支持能力的对话内容,从而为用户提供个性化的情绪支持。

在数据集选择方面,我们经过广泛调研,最终选定了两个高质量的开源数据集:SoulChatCorpus和PsyQA。SoulChatCorpus专注于情感支持和心理疗愈,包含了大量安慰、鼓励、共情等温柔风格的对话,能够为模型提供丰富的情感支持样本。PsyQA则是一个心理学问答数据集,涵盖了心理健康领域的专业知识,适合训练模型生成专业的情绪支持内容。这两个数据集的结合,能够使模型在情感疗愈场景中既具备温柔的表达能力,又具备专业的心理学知识。在经过数据清洗、格式化和增强后,我们计划使用Hugging Face Transformers库对DeepSeek模型进行微调,以优化模型生成对话的准确性和情感一致性,使微调后的模型能够生成温柔、口语化的对话内容

为了使AI小助手更具陪伴感,我们计划结合TTS(Text-to-Speech)技术实现语音输出。语音输出不仅能够增强用户的交互体验,还能让AI小助手更具人性化和亲和力。目前,我们已经调研了几种开源的TTS模型,包括Tacotron 2、FastSpeech 2和VITS。Tacotron 2基于深度学习,支持高质量的语音合成,生成的语音自然度高,且支持多种语言和音色,适合需要高保真语音输出的场景。FastSpeech 2基于Transformer架构,生成速度快,语音质量高,支持实时语音合成,非常适合交互式应用。VITS则结合了变分自编码器和对抗训练技术,生成的语音自然度高,且支持多种音色,适合需要多样化语音风格的场景。我们计划在实际体验和测试后,选择最适合项目需求的TTS模型。

在语音输出的实现过程中,我们还将重点关注音色的选择与调整。为了实现温柔、自然的语音效果,我们计划使用预训练音色或音色迁移技术。例如,可以选择女性声音或儿童声音作为基础音色,并通过音色迁移技术(如StarGAN-VC)进一步优化音色的温柔度和亲和力。通过这种方式,我们能够为用户提供更加温暖、贴心的语音交互体验。

4.4 多模态交互的轻量化实现与优化

 在本项目中,我们计划实现一种轻量级的多模态交互系统,其核心目标是将语音、图片等多模态数据转化为文本,并通过统一的文本接口与微调后的大语言模型进行交互。这种设计不仅能够降低系统复杂性,还能提高运行效率,同时保持多模态交互的核心功能。

4.4.1 多模态数据处理

在语音转文本方面,我们计划使用Speech2Text模型来实现高效的语音识别。Speech2Text模型是一种基于深度学习的语音识别技术,能够将用户上传的语音快速转化为文本。为了提高运行效率,我们可以使用轻量化版本的Speech2Text模型,并对识别结果进行后处理,去除噪声和重复内容,确保文本的准确性和简洁性。Speech2Text模型的核心优势在于其高精度的语音识别能力和对多语言的支持,这使得它能够适应不同用户的需求。

由于学校提供的DeepSeek并不支持上传图片等文件,因此,在图片转文本方面,我们计划使用BLIP模型来生成高质量的图像描述,将用户上传的图片转化为文字描述。BLIP模型基于Transformer架构,能够理解图像中的语义信息,并生成与图像内容相关的文字描述。例如,用户上传一张日落的照片,BLIP模型可以生成描述:“这是一张美丽的日落照片,天空中有橙色的云彩。”这种文字描述不仅能够帮助系统理解用户的情感状态,还能为后续的情感提供丰富的上下文信息。

4.4.2 统一的文本接口

在4.3中,我们已经介绍了基于数据集微调DeepSeek的聊愈对话生成,在多模态数据转化为文本后,我们将文本传输给大语言模型DeepSeek进行交互,实现聊愈对话。统一的文本接口是多模态交互的核心,它能够将语音、图片、视频等多种模态数据转化为统一的文本格式,并通过预先设计的Prompt提示词引导模型生成符合情绪疗愈场景的对话内容。

4.5 基于Prompt引导的DeepSeek情感分析与总结

在本项目中,我们的计划功能还包含:根据聊愈过程中的对话或用户写下的记愈内容,动态分析用户情感变化,总结今日情绪;对聊愈中的长对话生成总结;根据记愈内容生成用户标签。为了实现这些目标,同时简化项目中的模型使用,我们计划采用基于 Prompt 引导的 DeepSeek 模型,通过设计合适的提示词,引导模型对用户输入的内容进行情感分析、情感变化捕捉、对话总结以及用户标签生成,从而为用户提供全面、个性化的情绪支持和疗愈服务。

此处以生成用户今日标签为例,我们计划设计用户标签 Prompt,引导 DeepSeek 根据记愈内容生成用户标签。例如,Prompt 可以是:“请根据以下记愈内容生成用户标签:{用户输入文本}”。通过这种方式,DeepSeek 能够生成用户标签,例如:“疲惫但快乐的一天”“情绪波动较大的一周”。这些用户标签不仅能够帮助用户更好地了解自己的情感状态,还能为后续的情绪支持提供参考。

4.6 其他相关技术 

4.6.1  界面设计

本项目在界面设计上遵循Material Design设计语言,旨在提供一致、美观和直观的用户界面。在产品界面设计的过程中,我们强调了UI元素的质感和反馈效果,为年轻的用户绘制更为年轻活波的界面风格;同时使用较多的触感动画,一方面增强UI/UX的灵动性,另一方面也可以缓解慢接口调用带来的体验降级;在Material Design的基础上,我们结合产品的使用场景对布局设计等方面进行了适当调整,以更好的突出图像处理这一核心关注点。

4.6.2  服务编排设计

在服务端的服务编排问题上,我们参考领域驱动设计的风格,将服务按照可以接受的粒度划分为如下几个:

  1. 用户服务:负责用户全生命周期管理,包含身份认证、社交关系维护与成长体系支撑。通过JWT实现安全登录,维护用户基础画像(包含性格测试结果、偏好设置),管理蜜罐值账户的增减积分逻辑,处理设备绑定与多端同步。与激励服务协同更新用户成就状态,为其他服务提供基础用户数据支撑。
  2. 交互服务处理多模态输入的核心对话引擎,支持语音识别、图像解析与文本理解。内置对话状态机管理聊天流程,结合上下文理解实现情感化响应。对接情感服务进行实时情绪分析,触发内容生成服务创建治愈纸条,最终通过WebSocket维持长连接对话,完成从输入解析到AI回复的完整交互链路。
  3. 情感计算服务构建用户情绪模型的智能中枢,采用多模态融合分析技术(文本情感分析、语音情绪识别、图像情绪检测)。实时生成情绪波动曲线,持久化存储情感记忆特征,为周报生成提供历史情绪数据。通过机器学习动态修正用户情感标签,驱动心情果子的可视化生成,并向生成服务输出结构化情绪分析报告。
  4. 内容生成服务AI创意生产中心,根据情感分析结果自动生成治愈纸条和个性化周报海报,设计动态心情果子的视觉样式,维护信纸/罐子的素材库。分析服务数据智能处理中心,整合用户行为日志与情感分析数据。执行各项推理和分析任务
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值