错误信息 `RuntimeError: mat1 and mat2 shapes cannot be multiplied (64x1024 and 186624x4096)` 指出在执行矩阵乘法时,两个矩阵的尺寸不兼容。这通常发生在全连接层的前向传播过程中,即尝试将卷积层的输出(一个矩阵)与全连接层的权重矩阵相乘。
问题可能出在以下几个方面:
1. 卷积层输出尺寸:卷积层输出的尺寸(64x1024)可能不正确。这可能是因为 `AlexNet` 模型的卷积层参数设置不正确,或者 `_get_fc_input_size` 方法没有正确计算出全连接层的输入尺寸。
2. 全连接层权重矩阵尺寸:全连接层的权重矩阵尺寸(186624x4096)可能过大。这可能是因为 `AlexNet` 模型的全连接层参数设置不正确,或者 `_get_fc_input_size` 方法计算出的输入尺寸不正确。
3.数据维度问题:在将卷积层的输出传递给全连接层之前,需要确保数据的维度是正确的。通常,需要将卷积层的输出展平(flatten)为一个一维向量。
为了解决这个问题,你可以按照以下步骤操作:
1. 检查卷积层参数:确保 `AlexNet` 模型的卷积层参数设置正确,特别是第一个卷积层的卷积核大小、步长和填充。
2.调整 `_get_fc_input_size` 方法:确保使用正确的输入尺寸来计算全连接层的输入尺寸。例如,如果你使用的是 28x28 的输入尺寸,你需要调整 `_get_fc_input_size` 方法来适应这个尺寸。
3. 展平卷积层输出:在将卷积层的输出传递给全连接层之前,确保使用 `view` 或 `flatten` 方法将其展平为一个一维向量。
4. 检查全连接层权重矩阵尺寸:确保全连接层的权重矩阵尺寸与展平后的卷积层输出尺寸相匹配。
以下是一个示例,展示如何在 `forward` 方法中正确处理卷积层的输出:
def forward(self, img):
feature = self.conv(img)
# 展平卷积层的输出
feature = feature.view(img.size(0), -1)
print("Flattened feature size:", feature.size())
output = self.fc(feature)
return output
请注意,`img.size(0)` 表示批次大小,`-1` 表示自动计算剩余的维度以确保展平操作正确执行。
如果问题仍然存在,请仔细检查你的模型结构和参数设置,确保它们与你的输入数据和预期的输出尺寸相匹配。