JDK8-17新特性-StreamAPI使用三环节:实例化、中间操作、终止操作
1.Stream API简介
-
Stream API (java.util.stream)把真正的函数式编程风格引入到java中。这是目前为止对java类库最好的补充,因为Stream API可以极大提供java程序员的生产力,让程序员写出高效率、干净、简介的代码。
-
Stream是java8中处理集合的关键抽象概念,他可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。 使用Stream API对集合数据进行操作,就类似与使用SQL执行的数据库查询。也可以使用Stream API来并行执行操作。简言之,Stream API提供了一种高效且易于使用的处理数据的方式。
2.什么是Stream API
-
Stream是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。
-
Stream和Collection集合的区别: Collection是一种静态的内存数据结构,讲的是数据,而Stream是有关计算的,讲的是计算。前者主要面向内存,存储在内存中,后者主要是面向CPU,通过CPU实现计算。
3.为什么要使用Stream API
-
实际开发中,项目中多数数据源都来自于MySQL、Oracle等。但现在数据源可以更多了,有MongDB,Redis等,而这些NoSQL的数据就需要java层面去处理
注意事项:
-
Stream自己不会存储元素
-
Stream不会改变源对象。相反,他们会返回一个持有结果的新Stream。
-
Stream操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。即一旦执行终止操作,就执行中间操作链,并产生结果
-
Stream一旦执行了终止操作,就不能在调用其它中间操作或终止操作了。
4.Stream API vs 集合框架
-
Stream API 关注的是多个数据的计算(排序、查找、过滤、映射、遍历等),面向CPU的。
-
集合关注的是数据的存储,面向内存的。
-
Stream API之于集合,类似于SQL之于数据表的查询。
5.使用说明
-
Stream自己不会存储元素
-
Stream 不会改变源对象,相反,他们会返回一个持有结果的新Stream
-
Stream操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。即一旦执行中止此操作,就执行中间操作链并产生结果
-
Stream一旦执行了终止操作,就不能在调用其它中间操作或终止操作了。
6.Stream执行流程
//创建 Stream方法一: 通过集合
@Test
void test21() {
List<Employee> list = EmployeeData.getEmployees();
//default Stream<E> stream() : 返回一个顺序流
Stream<Employee> stream = list.stream();
//default Stream<E> parallelStream() : 返回一个并行流
Stream<Employee> stream1 = list.parallelStream();
System.out.println(stream);
System.out.println(stream1);
}
//创建一个Stream 方式二: 通过数组
@Test
void test22() {
//调用Arrays类的static<T> Stream<T> stream(T[] array): 返回一个流
Integer[] arr = new Integer[]{1, 2, 3, 4, 5};
Stream<Integer> stream = Arrays.stream(arr);
int[] arr1 = new int[]{1,2,3,4,5};
IntStream stream1 = Arrays.stream(arr1);
}
//创建Stream 方式三: 通过Stream的of()
@Test
void test23() {
Stream<String> stream = Stream.of("AA","BB","Employee");
}
方法 | 描述 |
---|
filter(Predicatep) | 接收Lambda,从流中排除某些元素 |
distinct() | 筛选,通过流所生成元素的hashCode()和equals()去除重复元素 |
limit(long maxSize) | 截断流,使其元素不超过给定数量 |
skip(long n) | 跳过元素,返回一个扔掉了前n个元素的流。 若流中元素不足n个,则返回一个空流。与limit(n)互补 |
//-筛选与切片
@Test
void test31() {
// filter(Predicate p) - 接收Lambda,从流中排除某些元素
//练习:查询员工表中的薪资大于7000的员工信息
List<Employee> list = Employee.getEmployees();
Stream<Employee> stream = list.stream();
stream.filter(emp -> emp.getSalary() > 7000).forEach(System.out::println);
System.out.println();
//limit(n) - 截断流,使其元素不超过给定数量。
//如下1.1是错误的示例。因为stream已经执行了终止操作,就不可以再调用其它的中间操作或终止操作了。
//1.1stream.limit(2).forEach(System.out::println);
list.stream().filter(emp -> emp.getSalary() > 7000).limit(2).forEach(System.out::println);
System.out.println();
//skip(n) - 跳过元素,返回一个扔掉了前n个元素的流。若流中元素不足n个,则返回一个空流。与limit相反
list.stream().skip(5).forEach(System.out::println);
System.out.println();
//distinct() - 筛选,通过流所生成元素的hashCode() 和 equals() 去除重复元素
list.add(new Employee(1,"你爸爸",55,1000000));
list.add(new Employee(1,"你爸爸",55,1000000));
list.add(new Employee(1,"你爸爸",55,1000000));
list.add(new Employee(1,"你爸爸",55,1000000));
list.add(new Employee(1,"你爸爸",55,1000000));
list.stream().distinct().forEach(System.out::println);
}
方法 | 描述 |
---|
map(Function f) | 接受一个函数作为参数,该函数会被应用到 每个元素上,并将其映射成一个新的元素。 |
mapToDouble(ToDoubleFunction f) | 接收到一个函数作为参数,该函数会被应用到每个元素上,产生一个新的DoubleStream。 |
mapToInt(TolntFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的InStream。 |
mapRoLong(ToLongFunction f) | 接受一个函数作为参数,该函数被应用到每个元素上,产生一个新的LongStream。 |
flatMap(Function f) | 接收一个函数·作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。 |
//2 - 映射
@Test
void test24() {
//map(Function f) - 接受一个函数作为参数,将元素转换成其他形式或提取信息,该函数会被应用到每个元素上
//练习:转换为大写
List<String> list = Arrays.asList("aa","bb","c");
//方式一:
list.stream().map(str -> str.toUpperCase()).forEach(System.out::println);
//方式二:
list.stream().map(String :: toUpperCase).forEach(System.out::println);
//练习:获取员工姓名长度大于3的员工
List<Employee> employees = EmployeeData.getEmployees();
list.stream()
.filter(emp -> emp.getName().length() > 3)
.forEach(System.out::println);
//练习:获取员工姓名长度大于3的员工的姓名
//方式一:
employees.stream()
.filter(emp -> emp.getName().length() > 3)
.map(emp -> emp.getName())
.forEach(System.out::println);
//方式二:
employees.stream()
.map(emp -> emp.getName())
.filter(name -> name.length() > 3)
.forEach(System.out::println);
//方式三:
employees.stream()
.map(Employee :: getName)
.filter(name -> name.length() > 3)
.forEach(System.out::println);
}
方法 | 描述 |
---|
sorted() | 产生一个新流,其中按自然顺序排序 |
sorted(Comparator com) | 产生一个新流,其中按比较器顺序排序 |
//3 - 排序
@Test
public void test26(){
//sorted() - 自然排序
/*
注意:并不会对容器本身进行更改
*/
Integer[] arr = new Integer[]{1,2,3,5,4,4,5,4,878,7};
String[] arr1 = new String[]{"aa","cc","hj"};
Arrays.stream(arr)
.sorted()
.forEach(System.out::println);
System.out.println(Arrays.toString(arr));
Arrays.stream(arr1)
.sorted()
.forEach(System.out::println);
//sorted(Comparatar com) - 定制排序
List<Employee> list = EmployeeData.getEmployees();
list.stream()
.sorted((e1,e2) -> e1.getAge() - e2.getAge())
.forEach(System.out::println);
//针对于字符串从大到小排序(降序)
Arrays.stream(arr1)
.sorted((s1,s2) -> s1.compareTo(s2))
.forEach(System.out::println);
//升序
Arrays.stream(arr1)
.sorted(String :: compareTo)
.forEach(System.out::println);
}
方法 | 描述 |
---|
allMatch(Predicate p) | 检查是否匹配所有元素 |
anyMatch(Predicate p) | 检查是够至少匹配一个元素 |
noneMatch(Predicate p) | 检查是否没有匹配所有元素 |
findFirst() | 返回第一个元素 |
count() | 返回流中的元素总数 |
findAny() | 返回当前流中的任意元素 |
max(Comparator c) | 返回流中最大值 |
min(Comparator c) | 返回流中最小值 |
forEach(Consumer c) | 内部迭代使用Collection接口需要用户去做迭代,称为外部迭代。 相反,Stream API使用内部迭代 -- 它帮你把迭代做了 |
//1 - 匹配与查找
@Test
void test01() {
//allMatch(Predicate p) 检查是否匹配所有元素
//练习:是否所有员工的年龄都 大于 18
List<Employee> list = EmployeeData.getEmployees();
System.out.println(list.stream().allMatch(emp -> emp.getAge() > 18));
//anyMatch(Predicate p)检查是够至少匹配一个元素
//练习:是否存在年龄大于18岁的员工
System.out.println(list.stream().anyMatch(emp -> emp.getAge() > 18));
//练习:是否存在员工的工资大于 10000
System.out.println(list.stream().anyMatch(emp -> emp.getSalary() > 10000));
//findFirst - 返回第一个元素
System.out.println(list.stream().findFirst().get());
}
@Test
void test02() {
//count - 返回流中元素的总个数
List<Employee> list = EmployeeData.getEmployees();
System.out.println(list.stream().filter(emp -> emp.getSalary() > 7000).count());
//max(Comparator c) - 返回流中的最大值
//练习:返回最高工资的员工
//方式一:
System.out.println(list.stream().max((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary())));
//方式二:
System.out.println(list.stream().map(emp -> emp.getSalary()).max((s1,s2) -> Double.compare(s1,s2)).get());
//方式三:
list.stream().map(emp -> emp.getSalary()).max(Double :: compare).get();
//min(Comparator c) - 返回流中的最小值
//练习:返回工资最低的员工
list.stream().min((e1,e2) -> Double.compare(e1.getSalary(),e2.getSalary())).get();
//forEach(Consumer c) - 内部迭代
list.stream().forEach(System.out::println);
//针对于集合,jdk8中增加了一个遍历的方法
list.forEach(System.out::println);
//针对于List来说,遍历的方式:1.使用Iterator 2.增强for 3.一般for 4.forEach()
}
方法 | 描述 |
---|
redce(T identity,BinaryOperator b) | 可以将流中的元素反复结合起来,得到一个值。返回T |
reduce(BinaryOperator b) | 可以将流中元素反复结合起来,得到一个值。返回Optional<T> |
注意:map和reduce的连接通常称为 map-reduce模式,因Google用它来进行网络搜索而出名
//2 - 归约
@Test
void test03() {
// reduce(T identity,BinaryOperator) - 可以将流中元素反复结合起来,得到一个值。返回T
// 练习1:计算 1 - 10 的自然数和
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
//写法一:
System.out.println(list.stream().reduce(0, (x1, x2) -> x2 + x1));
//写法二:
System.out.println(list.stream().reduce(0, (x1, x2) -> Integer.sum(x2,x1)));
//写法三:
System.out.println(list.stream().reduce(0, Integer::sum));
System.out.println(list.stream().reduce(10, (x1, x2) -> x1 + x2));
//reduce(BinaryOperator b)可以将流中元素反复结合起来,得到一个值。返回Optional<T>
//练习二:计算公司所有员工工资的总和
List<Employee> employeeList = EmployeeData.getEmployees();
System.out.println(employeeList.stream()
.map(emp -> emp.getSalary())
.reduce((s1, s2) -> Double.sum(s1, s2)));
System.out.println(employeeList.stream().reduce(0, Double::sum));
}
方法 | 描述 |
---|
collect(Collector c) | 将流转换成其他形式。接受一个Collector接口的实现, 用于给Stream中元素做汇总的方法 |
Collector接口中方法的实现决定了如何对流执行收集的操作(如收集到 List、Set、Map)。
//3 - 收集
@Test
void test04() {
List<Employee> list = EmployeeData.getEmployees();
//collect(Collector c)将流转换成其他形式。接受一个Collector接口的实现,<br>用于给Stream中元素做汇总的方法
//练习1:查找工资大于6000的员工,结果返回一个List或Set
List<Employee> list1 = list.stream().filter(emp -> emp.getSalary() > 6000).collect(Collectors.toList());
list1.forEach(System.out::println);
System.out.println();
list.forEach(System.out::println);
System.out.println();
//练习2:按照员工的年龄进行排序,返回一个新的List中
List<Employee> list2 = list.stream().sorted((e1,e2) -> e1.getAge() -e2.getAge()).collect(Collectors.toList());
list2.forEach(System.out::println);
}
}