一、基本概念
- 线性代数:是代数学的一个分支,主要处理线性关系问题。线性关系指的是数学对象(比如方程中出现的未知数)之间的关系是以一次形式来表达的。
- 线性方程:含有n个未知量的一次方程。
- 线性方程组:由多个线性方程构成的集合。
- 线性函数:关于变量是一次的函数,如一元、二元线性函数。
- 向量:有方向的量,是线性代数中的基本元素。
- 向量空间:一组向量的集合,这些向量对加法和数乘封闭。
- 矩阵:由数按矩形排列构成的二维数组,是线性代数的基本工具,用于表示线性方程组、线性变换等。
- 行列式:基于矩阵所包含的行列数据计算得到的一个标量,用于求解线性方程组、判断矩阵是否可逆等。
二、矩阵理论
- 矩阵的加法:两个同型矩阵对应元素相加得到的矩阵。
- 数乘矩阵:一个数与矩阵的每个元素相乘得到的矩阵。
- 矩阵与矩阵相乘:两个矩阵A和B相乘,得到的新矩阵C的元素Cij是A的第i行与B的第j列对应元素乘积的和。
- 矩阵的转置:将矩阵的行和列互换得到的矩阵。
- 方阵的行列式:n阶方阵A对应的行列式,记作|A|或det(A)。
- 可逆矩阵(